ANAIS DO
8º SIMPÓSIO DE GEOLOGIA
DE MINAS GERAIS

Boletim n° 13

25 Anos do
Centro de Geologia
Eschwege/IGC/UFMG

SOCIEDADE BRASILEIRA DE GEOLOGIA - NÚCLEO MINAS GERAIS
ANAIS DO
8º SIMPÓSIO DE GEOLOGIA
DE MINAS GERAIS

Boletim nº 13

11 a 17 de Setembro de 1995 - Diamantina/MG

Tema Central: A CORDILHEIRA DO ESPINHAÇO
25 Anos do Centro de Geologia Eschwege

PROMOÇÃO: SOCIEDADE BRASILEIRA DE GEOLOGIA - Núcleo Minas Gerais
INSTITUTO DE GEOCIÊNCIAS DA UFMG

ESTE VOLUME FOI PUBLICADO COM APOIO:
FAPEMIG: Fundação de Amparo à Pesquisa do Estado de Minas Gerais
CNPq: Conselho Nacional de Desenvolvimento Científico e Tecnológico
Presidente: José Carlos Gaspar
Vice Presidente: Cláudio Riccomini
Diretor Secretário: Sérgio Kleinfelder Rodrigues
Diretor Tesoureiro: Luiz Antônio Pereira de Souza
Diretor de Publicações: Augusto José Pedreira
1º Diretor Suplente: Fernando Pellon de Miranda
2º Diretor Suplente: Marcel Auguste Dardenne

Presidente: Newton Litwinski
Vice Presidente: Victor E. Suckau
1º Secretário: Marcelo L. Vidigal Guimarães
2º Secretário: Nelson B. O. Resende Costa
1º Tesoureiro: Claiton Piva Pinto
2º Tesoureiro: Ramiro Gomes de Faria
Diretor de Publicações: Ernesto von Sperling
1º Suplente: Luciano Lopes Pohl
2º Suplente: Geraldo G. Vieira dos Santos
Conselho Representante: Atahualpa Valença Padilha
Suplente de Conselheiro: Friedrich E. Renger

Comissão Organizadora

Presidente: Friedrich Ewald Renger
Vice Presidente: Pedro Ângelo Almeida Abreu
Tesoraria:
 Antônio Wilson Romano
 Marcelo L. Vidigal Guimarães
 Celsio Scalambri Costa
Coordenação de Divulgação e Publicações:
 Ana Maria Dias Chula
 Luciano de Melo Moreira
Coordenação de Secretaria:
 Maria Cristina Domingues Ramos
 Elba Caldeira Leite
Coordenação de Excursões e Atividades Culturais:
 Antônio Celso Campolin Fogaça
 Luciana Felício Pereira
Comitê Científico:
 Coordenadores:
 Luiz Guilherme Knauer
 Maurício Antônio Carneiro
Comitê de Revisão:
 Aliocau Saadi
 André Danderfer Filho
 Antônio Gilberto Costa
 Antônio Wilson Romano
 Carlos Alberto Rosière
 Carlos Maurício Noce
 Caroline Jeanette Souza Gomes
 César Augusto Chicarino Varajão
 Claudinei G. de Oliveira
 Cristina H. R. Rocha Augustin
 Friedrich Ewald Renger
 Geraldo Norberto Sgarbi
 Gilberto Hernandez
 Hanna Jordt-Evangelista
 Hubert Roesser
 Issamu Endo
 João Henrique Grossi Sad
 Luiz Guilherme Knauer
 Lydia Maria Lobato
 Marcelo A. Martins Neto
 Maurício Antônio Carneiro
 Newton de Souza Gomes
 Patrícia Sgarbi
 Paulo de Tasso Castro
 Pedro Ângelo Almeida Abreu
 Ricardo Diniz da Costa
 Roberto Venture Santos
 Rogério Rodrigues da Silva
 Selma Fernandes

Secretaria Executiva
 ÉTICA Promoção de Evento
 Rua Nossa Senhora do Brasil, 765
 31130-090, BH-MG.
 Tel: (031) 444-4798
 Fax: (031) 442-7869
AGRADECIMENTOS

O Núcleo de Minas Gerais da Sociedade Brasileira de Geologia expressa seus sinceros agradecimentos às seguintes entidades e empresas, cujo apoio e contribuição financeira possibilitaram a realização do 8º Simpósio de Geologia de Minas Gerais.

CGE - Centro de Geologia Eschwege (IGC/UFMG)
CPMTC - Centro de Pesquisa Prof. Manoel Teixeira da Costa (IGC/UFMG)
COMIG - Companhia Minadora de Minas Gerais
CPRM - Companhia de Pesquisa de Recursos Minerais
CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
DOCEGEO - Rio Doce Geologia e Mineração S.A.
FERTECO - Mineração Ferteco S.A.
FIEMG - Federação das Indústrias do Estado de Minas Gerais
FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
GEOSOL - Geologia e Sondagens Ltda.
IGC - Instituto de Geociências da UFMG
MMV - Mineração Morro Velho Ltda
MBR - Minerações Brasileiras Reunidas S.A.
PETROBRÁS - Petróleo Brasileiro S.A.
Associação Comercial de Diamantina
ÍNDICE

APRESENTAÇÃO I

APRECIAÇÃO À REINHARD PFLUG II-IX

GEOLOGIA DA CORDILHEIRA DO ESPINHAÇO 1

O Anticlinório de Gouveia: exemplo de uma culminação antiformal nucleada pelo embasamento ALKMIM, F.F. 1-2

Aspectos geomorfológicos da região de Gouveia, Espinhaço Meridional, MG AUGUSTIN, C.H.R.R. 3-4

Considerações sobre a geologia da região de Desembargador Otoni - Planalto de Minas, Diamantina (MG) CHULA, A.M.D.; KNAUER, L.C.; ABREU, P.A.A. 5-6

Mineração e percepção ambiental na toponímia da mesoregião do Jequitinhonha DEUS, J.A.S. de; NOGUEIRA, M. 7-8

O Grupo Conselheiro Mata no seu quadro paleogeográfico e estratigráfico DUPONT, H. 9-10

Idade do Supergrupo Espinhaço: determinação $^{207}{\text{Pb}}/^{206}{\text{Pb}}$ pelo método de evaporação do Pb sobre monozórcos de metavulcanitos sinsedimentares DUSSIN, T.M.; DUSSIN, I.A.; ROSSI, P.; CHARVET, J. 11-13

A evolução paleogeográfica da tectonossequência Sopa-Brumadinho, Bacia Espinhaço, fase rifte, na região entre Sopa e Guinda (MG) MARTINS NETO, M.A. 16-18

A evolução tectonoestratigráfica do rifte Espinhaço na região de Sopa/Guinda (MG) e sua implicação nas mineralizações diamantíferas MARTINS NETO, M.A. 19-21

Fácies de fluxo gravitacional de sedimentos na tectonossequência Sopa-Brumadinho, Bacia Espinhaço (MG) MARTINS NETO, M.A. 22-24

Tectonoestratigrafia da Bacia Espinhaço no estado de Minas Gerais MARTINS NETO, M.A. 25-27

Estratigrafia de sequências e modelo deposicional da Formação Guiné (Mesoproterozóico) na Chapada Diamantina, Bahia PEDREIRA, A.J. 28-29

Alvo Bom Javá: exemplo de transcorrência local na região de Morro do Pilar, Espinhaço Meridional/MG PENHA, U.C.; MACHADO, S.A.M. 30-31

Dados preliminares e potencial metalogenético da sequência Limoeiro, Serra do Espinhaço Setentrional Mineiro PENHA, U.C.; SABÓIA, L. de A. 32-33

Exploração mineral no norte de Minas Gerais: o exemplo do Projeto Serranópolis PENHA, U.C.; DELGADO, S. de L. 34-36

Depósitos gemíferos do Espinhaço em Minas Gerais

Análise e interpretação de imagens TM/Landsat no estudo de estruturas rúpteis e rúpteis-dúcteis em partes do Quadrilátero Ferrífero e Espinhaço Meridional, Minas Gerais, Brasil
SANTANNA, M.V.; SANTOS, A.R. dos

The Lower Espinhaço Supergroup in the area between Diamantina and Gouveia, Minas Gerais, Brazil: an example of intracratonic rift basin
SILVA, R.R. da

A Cordilheira do Espinhaço em Minas Gerais: um levantamento bibliográfico
SOUZA, E.M. de; MARTINS, M.O.Z.

EVA LUÇÃO CRUSTAL

Datação de monazitas do distrito pegmatítico de Santa Maria de Itabira, MG
BILAL, E.; MARCIANO, V.R.P.R.O.; FUZIKAWA, K.; CORREIA NEVES, J.M.; GIRET, A.

A tafrogênese estatiana no continente sul-americano
BRITO NEVES, B.B. de

Afinidades geoquímicas entre gneisses arqueanos dos complexos metamórficos Bonfin e Belo Horizonte
CARNEIRO, M.A.; NOCE, C.M.; CUNHA, E.M. da; FERNANDES, R.A.

Elementos causadores de cores nas turmalinas da Mina do Cruzeiro, São José da Safira (MG)
CÉSAR-MENDES, J.; VISERO, D.P.

Diques máficos proterozoicos do complexo granito-gniásico-migmatítico da porção meridional do Cráton do São Francisco, MG
CHAVES, A. de O.; CORREIA NEVES, J.M.

Gneiss sequences in the Guaxupé Granulite Massif, and the nature of fluids
CHOUDHURI, A.; SILVA, D.; SZABO, G.; NOGUEIRA, J.R.

Kinematic analysis in the Neoproterozoic Araquá Belt, SE Brazil: tectonic implications for Gondwana Assembly
D’EL-REI SILVA, L.I.H.; PEDROSA-SOARES, A.C.; FUCK, R.A.

Estimativa das condições de cristalização do Granito Borrachudos na região de Dores de Guanhães, MG
FERNANDES, M.L.S.; BILAL, E.; CORREIA NEVES, J.M.; GIRET, A.; COSTA, K. de V.

Geologia do Greenstone Belt Rio das Velhas no distrito aurífero de São Bartolomeu, Minas Gerais
GOLIA, A.; CUNHA, E.M. da; OLIVEIRA, C.G. de; FERREIRA, G. de S.

Diâbásios do Alto Rio Doce,
JORDT-EVANGELISTA, H.; COTTA, Z.C.

Mapamento geológico na escala 1:25.000 na folha Simonésia (MG)

Petrografia e geoquímica dos granitóides da região de Galiléia, leste de Minas Gerais
NALINI Jr., H.A.; BILAL, E.; CORREIA NEVES, J.M.; GIRET, A.; CÉSAR-MENDES, J.

Considerações preliminares sobre as condições de pressão e temperatura de cristalização dos granitóides da região de Galiléia, Minas Gerais
NALINI Jr., H.A.; BILAL, E.; CORREIA NEVES, J.M.

Ocorrência de apatita no regiões de Guiricema, Minas Gerais
PEREIRA, R.M.; ÁVILA, C.A.; SANTOS, R.A. dos

Variação composicional dos Mn-enfibólios como monitor do metamorfismo no Morro da Mina, Conselheiro Lafaiete, MG
PIRES, F.R.M.

Padrões de terras raras de algumas formações ferríferas arqueanas do Quadrilátero Ferrífero
RAPOSO, F.O.; LADEIRA, E.A.
O Complexo Granitoide de Florestal - parte meridional do Cráton de São Francisco - primeiros dados petrográficos e geoquímicos
ROMANO, A.W.; BILAL, E.; CORREIA NEVES, J.M.; GIRET, A.; MOUTTE, J.

The Ibirité Gabbro and the Borrochudos Granite - the rift-related magmatism of mesoproterozoic age in the Quadrilátero Ferrifero (MG)
SILVA, A.M.; CHEMALE Jr., F.; HEAMAN, L.

ESTRATIGRAFIA E SEDIMENTOLOGIA

Aspectos diagenéticos das rochas do Membro Ponte Alta, Formação Marília, no Triângulo Mineiro - MG
ALVES, J.M. de; GOMES, N.S.

Evidências de dissolução por ácido sulfúrico na espeleogênese no Grupo Una, Bahia
AULER, A.

Estratigrafia de rochas mesozoicas e cenozoicas (?) da porção nordeste da Bacia do Paraná, região do distrito de Ponte Alta, Uberaba - MG
BARBOSA, E.M.; LARA, R.P.

Novas ocorrências de estruturas estromatolíticas nas rochas carbonáticas da Formação Gandarela, Quadrilátero Ferrifero, Minas Gerais
BERTOLINO, L.C.; PIRES, F.R.M.

Geologia dos turbiditos: glacio-lacustres da região de Urucuia - MG
CAMPOS, J.E.G.; DARDENNE, M.A.

O conglomerado Sambrurá (Grupo Bambuí, proterozoico superior) e rochas sedimentares associadas no flanco leste da Serra da Pimenta, SW de Minas Gerais: um sistema de fan-delta
CASTRO, P. de T.A.; DARDENNE, M.A.

Posicionamento litoestratigráfico dos fosforitos da Formação Vazante na região de Coromandel-Rocinha-Lagamar, Minas Gerais
DARDENNE, M.A.; FREITAS-SILVA, F.H.; SOUZA, J.F.C.; NOGUEIRA, G.M.S.; CAMPOS, J.E.G.

Análise de elementos arquiteturais na caracterização do sistema fluvial da Formação Uberaba, cretácéo superior da Bacia do Paraná, no Triângulo Mineiro
FERREIRA Jr., P.D.; GUERRA, W.J.

Caracterização faciológica da Formação Bebedouro (proterozoico superior) no estado da Bahia
GUIMARÃES, J.T.; DOMINGUEZ, J.M.L.

Considerações morfo-genéticas sobre cavernas em quartzitos na Cordilheira do Espinhaço
LAUREANO, F.V.; CANÇAD, F.L.L.

Interpretação paleoambiental do terciário da Bacia do Gandarela com base nas ocorrências de dinolflagelados de água doce e outros palinomorfos
MAIZATTO, J.R.; REGALI, M. da S.P.

Considerações sobre o ambiente deposicional do Membro Serra da Galga, cretácéo da Bacia do Paraná
PRAÇA LEIT, M.G.; GOMES, N.S.; SANTOS, M. do C.; OLIVEIRA, A.D.

Contribuição à petrografia de conglomerados e arenitos do Membro Serra da Galga (Formação Marília), cretácéo da Bacia do Paraná
PRAÇA LEIT, M.G.; GOMES, N.S.; SANTOS, M. do C.; OLIVEIRA, A.D.

Estudo diagenético preliminar em arenitos do Membro Serra da Galga, cretácéo da Bacia do Paraná
PRAÇA LEIT, M.G.; GOMES, N.S.; SANTOS, M. do C.; OLIVEIRA, A.D.

GEOLOGIA ESTRUTURAL E ECONÔMICA

Aspectos geológicos do depósito aurífero de Bico de Pedra, Greestone Belt Rio das Velhas, Quadrilátero Ferrifero, MG
BORBA, R.P.; OLIVEIRA, C.G. de; ENDO, I.; FIGUEIREDO, B.R.

Sobre a definição do termo Jacutinga - sítio de mineralização aurífera
CABRAL, A.R.; PIRES, F.R.M.

111-112

113-114

115-116

117-118

119-120

121-122
Contribuição ao estudo estrutural e cinemático de metassedimentos correlacionáveis ao Grupo São João 123-124
Del Rei na região de Itaci, norte de Lavras, MG
DEHLER, N.M.; MACHADO, R.; ENDO, I.; SIMONATO, M.D.

Aplicação de elementos arquiteturais na prospecção de diamantes nos conglomerados polimíticos de Romaria no Triângulo Mineiro
FERREIRA Jr., P.D.; CASTRO, P. de T.A.; GUERRA, W.J.

A inversão tectônica no Quadrilátero Ferrífero: modelos físicos
GOMES, C.J.S.; CAVALCANTE, J.A.D.; SANTOS, G.J.I.

Significado dos movimentos normais na borda oeste do Sínclinal Moeda, Quadrilátero Ferrífero
HIPPERT, J.F.M.;

Os modelos propostos para o depósito aurífero de Passagem de Mariana
OLIVEIRA, F.R.; SCHRANK, A.; ENDO, I.; XAVIER, R.P.

Deformação e metamorfismo da sequência litológica precambriana da região da Serra da Piedade,
Quadrilátero Ferrífero, Minas Gerais
PIRES, F.R.M.; GODOI, A.

Métodos não convencionais na exploração petrolífera da Bacia do São Francisco: geoquímica de superfície (gasometria) e prospecção microbiológica
SANTOS, R.C.R. dos; BABINSKI, N.A.

Estruturação da porção meridional da Bacia Alto-Sanfranciscana cretáceo do oeste de Minas Gerais
SAWASATO, E.Y.; ALKMIN, F.F. de

Petrografia do depósito de cromita do Morro do Cruzeiro, Serro, Minas Gerais
ZAPPAROLI, A. de C., ANGELI, N.; HORN, A.H.

SESSÃO PAINEL

Painel sobre rochas e minerais industriais do estado de Minas Gerais
COSTA, A.G.; ROMANO, A.W.
APRESENTAÇÃO

O 8º Simpósio de Geologia de Minas Gerais, promovido pelo Núcleo de Minas Gerais da Sociedade Brasileira de Geologia tem um significado especial. Além da reunião bianual dos colegas para discutir resultados de pesquisas geológicas e novos rumos profissionais, será comemorado o 25º aniversário de fundação do Instituto Eschwege, hoje Centro de Geologia Eschwege do Instituto de Geociências da UFMG. Assim tornou-se natural a escolha do tema central deste simpósio: "Geologia da Cordilheira do Espinhaço". O "Eschwege" tem servido de base logística e centro de apoio para um sem número de trabalhos geológicos e de áreas afins. Nestes 25 anos o "Eschwege" se fixou na rotina do ensino da geologia dos cursos de graduação no Brasil e teve, neste campo, um papel muito importante para a realização de mais de sete dezenas de teses de doutoramento e dissertações de mestrado defendidas em universidades brasileiras e alemãs.

O trabalhos técnicos apresentados no simpósio foram analisados criteriosamente pelo Comitê Científico e pela Comissão de Revisão, e foram reunidos para publicação neste volume de Anais.

É com satisfação que o Núcleo de Minas Gerais da Sociedade Brasileira de Geologia entrega este volume à comunidade, esperando estar cumprindo seu dever de divulgar os avanços no conhecimento geológico do Estado.
PROF. DR. REINHARD PFLUG
APRECIACIÃO A REINHARD PFLUG

Não ocorreu nenhum interlúdio na sua dedicação à geologia da Serra do Espinhaço e adjacências. Entre 1963 e 1993 publicou 25 trabalhos relacionados à mesma, ao mesmo tempo que prosseguiu em sua carreira acadêmica, como professor; mais recentemente, tornou-se especialista em modelagem geológica computacional, tema no qual já dedicou 16 trabalhos. Se adicionarmos 15 outros trabalhos de geologia geral (11 dos quais sobre temas diversos de geologia de Brasil, incluindo-se correlações Brasil-Afri), tem-se importante e dedicada contribuição às ciências geológicas.

Em 1969 Pflug cria o Centro de Geologia Eschwege (anteriormente, Instituto Eschwege), em Diamantina, com apoio dos governos alemão e brasileiro. Idealizou e implantou um organismo que serviu e serve de suporte para estudos regionais de pós-graduação e para treinamento básico de geologia de campo para estudantes brasileiros dos cursos de graduação em geologia. O instituto foi dotado de alojamentos, biblioteca, laboratório, veículos de campo e professores. Desse modo, foi possível à centenas de estudantes receber treinamento complementar. Tornou-se o Centro, a partir de 1978 órgão complementar do Instituto de Ciências da UFMG.

Desde a sua fundação o Centro de Geologia Eschwege serviu como centro de apoio para a realização de 3 teses de diploma de estudantes alemães e 29 teses de doutoramento de estudantes alemães (23) e brasileiros (6), sob a orientação de Pflug, a primeira delas realizada em 1969 e a última, em 1995. Boa parte dessas teses contam com mapas geológicos nas escalas 1:100.000 e 1:25.000, que auxiliaram no entendimento de aspectos diversos da geologia regional e local, em áreas diversas do conhecimento, seja ele estratigráfico, estrutural, petroclíico ou de evolução geotectônica.

Pflug encontrou na Serra do Espinhaço uma geologia atraente e complexa, servindo como apoio de campo para pesquisas científicas, que uma vez realizadas auxiliam no desvendamento de sua fascinante complexidade. Penso haver algo muito especial na serra. Aqueles que demandam o terreno escarpado da serra, a partir de Belo Horizonte, observam uma mudança saliente na paisagem e na geologia. Na serra o terreno torna-se, em sua maior parte, rugoso, infértil e marcado por notáveis gargantas por onde fluem rápido cursos de água muito limpa, limitados de um e outro lado por impressionantes massas rochosas. Nenhum apreciador da natureza fica imune à atração exercida pela Serra do Espinhaço. Tal, me parece, aconteceu com Pflug.

O entusiasmo manifestado por Pflug, em relação à Serra do Espinhaço tornou-se a motivação para que estudantes de pós-graduação, sob sua orientação abordassem problemas diversos e desenvolvessem estudos específicos sobre os mesmos. Este entusiasmo persistiu inabalável por toda a carreira de Pflug, resultando em permanente divulgação de dados através de teses universitárias, nas quais se nota claramente sua influência.

Pflug é um excelente professor. Suas palestras e excursões não são formais. São muito bem ilustradas e notadamente didáticas, o que o distingue da maioria dos professores. Sua distinta aptidão para a fotointerpretação permitiu-lhe estabelecer um ordenamento estratigráfico válido até hoje para a
principal sequência rochosa da Serra do Espinhaço; deve ser mencionado que para parte da mesma nem sempre dispunha de significativo controle de campo. Acompanhe-lo em uma excursão na Serra do Espinhaço é muito agradável por causa das demonstrações gráficas que utiliza, pela criteriosa escolha das exposições que esclarecem as questões ligadas à interpretação e pela gentileza de trato.

Os trabalhos de Pflug sobre a Serra do Espinhaço são frequentemente citados por outros pesquisadores e têm exercido influência indireta ou direta sobre o que se tem produzido hodiernamente, em relação à geologia da mesma. Essa influência irá perdurar por muito tempo, por causa da qualidade dos seus trabalhos.

O Núcleo de Minas Gerais da Sociedade Brasileira de Geologia, ao dedicar a Reinhard Pflug o seu 8º Simpósio de Geologia honra sua tradição de homenagear geocientistas que têm se distinguido no trato de nossa ciência. Por isso é justa esta apreciação.

J.H. Grossi Sad
Belo Horizonte, setembro, 1995
PRINCIPAIS TRABALHOS PUBLICADOS

TESES DE DIPLOMA (DIPLOM-ARBEITEN), ABORDANDO A SERRA DO ESPINHAÇO, ORIENTADAS PELO PROF. R PFLUG

TRABALHOS TÉCNICOS
O ANTICLINÓRIO DE GOUEVA: EXEMPLO DE UMA CULMINAÇÃO ANTIFORMAL NUCLEADA PELO EMBASAMENTO

FERNANDO F. ALKMIM - DEGEO/EM/UFOP

INTRODUÇÃO

Ao se fazer uma descrição da arquitetura geral do anticlinóirio de Gouveia, pretende-se contribuir para a resposta à questão chave: a cerca da geometria e dos processos atuantes na geração dos cinturões de dobramentos e empurrões. Trata-se da maneira pela qual se dá o envolvimento do substrato cristalino na deformação da cobertura.

FEIÇÕES DOMINANTES DO ANTICLINÓRIO DE GOUEVA

De uma perspectiva global, o Anticlinóirio de Gouveia pode ser descrito como uma culminação antiformal de cobertura, na qual uma íntima associação entre dobras e falhas de empurrão (Almeida Abreu 1985, Schöll & Fogaça 1981) ancoradas no embasamento cristalino dominam o quadro estrutural. Possui o traço axial orientado segundo N-S e vergência geral para oeste. Sua charneira mergulha para norte com cerca de 15°.

A porção norte do anticlinóirio tem como componentes principais quatro zonas de cisalhamento associadas a dobras (Fig.1). Nas rochas do complexo cristalino, as zonas de falha se expressam como zonas de cisalhamento dúctil-rúpteis, espaçadas, acompanhadas por filonitos e milonitos. Possuem espessuras variáveis entre 50 e 300 m, e são ricas em veios de quartzo e turmalina. Podem ser cartografadas por uma extensão mínima de 15 km e, geomorfologicamente, expressam-se como cristas alinhadas. Ao adentrarem na cobertura, em primeiro lugar, transformam-se em zonas de falha estreitas, com espessuras de 5 a 50 m, também acompanhadas de intensa venulação de quartzo. Na continuidade de seu trago para norte, isto é, na medida em que sobe-se na seção de supracrustais, perdem progressivamente relevo e passam a dobras de cobertura.

Nas zonas de falha, as foliações miloríticas e os elementos componentes orientam-se preferencialmente segundo 090/60. As linhagens de estiramento e estrías de falha orientam-se preferencialmente segundo 107/50, de modo que sobre os planos de fluxo existem uma obliquidade de cerca de 73°. Ou seja, todas as falhas analisadas possuem uma componente direcional sinistrál (Fig.1). Tal componente foi grande o suficiente para que lâminas do complexo cristalino experimentassem o transporte para oeste em associação com uma rotação horária. Em consequência disso, todos os charneiras de dobra nas unidades de cobertura exibem caimento para norte, uma feição característica da zona periclinal do anticlinóirio.

No domínio da cobertura, as grandes falhas de empurrão se associam às seguintes dobras: a) no bloco de capa, tem-se, invariavelmente, um amplo arco antiformal monocíclico, vergente para oeste, que mostra caimento para norte, flanco curto rompido e olimbo leste longo e mergulhando ESE com 30°; b) no bloco de lapa, encontra-se um sinforme fechado, vergente para oeste, com o limbo leste curto em posição vertical ou invertida, secionado pela zona de falha.

Outros componentes do arcabouço do anticlinóirio de Gouveia são falhas de rasgamento de orientação preferencial E-W. Em geral, possuem pequenos rejeitos, mas são muito frequentes. Mostram deslocamentos preferencialmente dextrais e, não raro, se instalaram no interior ou nas paredes de diques de rochas básicas de mesma orientação. Tais falhas devem corresponder às falhas originalmente de transferência, na medida em que, em outros locais, separam compartimentos faciologicais e estruturais muito distintos, como verificado por Almeida Abreu & Pflug (1994) e Martins Neto (com. oral).

Um traço muito peculiar do anticlinóirio é a posição espacial anômala mostrada pelas estruturas ao longo de uma estreita faixa do seu flanco leste, junto à zona de contato substrato-cobertura. Ali acentuam-se bastante a intensidade dos dobramentos e mergulho da clivagem da cobertura (mergulhos da ordem de 80°). Além disso, verifica-se uma série de retro-empurrões que, ancorados no embasamento, propagam-se pelas rochas do Supergrupo Espinhaço.

Observa-se ainda, na área do anticlinóirio, um rico acervo de estruturas concentradas em zonas de cisalhamento que se instalaram nos contatos entre unidades de constituição muito distintas e que se apresentam entre e dentro de determinados estratos. Nestas zonas, que exibem mesma polaridade que as
estruturas dominantes, verifica-se uma foliação penetrativa, não raro milonítica, associada a inúmeros indicadores de transporte tectônico para oeste. As relações de corte e superposição com as estruturas dominantes indica que essas zonas foram nucleadas em uma fase de deformação anterior, como já fora descrito por Uhlein (1991) e Silva & Toledo (1994). Estas zonas podem ser entendidas como zonas de cisalhamento inter e intraestratais relativas a fase inicial de geração dos cinturões de cavaloimento e empurrões, tal como descritas por Alkmim & Danderfer (1995).

REFERÊNCIAS BIBLIOGRÁFICAS

[Diagramma]
ASPECTOS GEOMORFOLÓGICOS DA REGIÃO DE GOUEVA, ESPINHAÇO MERIDIONAL, MG

AUGUSTIN, C.H.R.R. - CPMTC/IGC/UFMG

INTRODUÇÃO

A evolução da chamada "depressão de Gouveia", sofreu grande influência estrutural. A erosão diferencial, que atuou localmente, foi responsável pela retirada das camadas metamórficas de rochas do Espinhaço, expondo o granito-gnaisse do embaixamento (Fig. 1). O encaixe da drenagem dos ribeirões da Areia e do Chiqueiro, seguindo em especial os eixos dos sinclinais e anticlinais (Augustin 1995) foi responsável não só pela expansão do talvegue à montante, como também por seu alargamento à partir do recuo lateral das escarpas formadas pelos xistos do Supergrupo Rio Paraína e quartizitos, filitos do Supergrupo Espinhaço, num modelo semelhante ao proposto por King (1956, 1962).

CICLOS EVOLUTIVOS E SUA EXPRESSÃO MORFOLÓGICA ATUAL

A plotagem da distribuição altimétrica (frequência altimétrica) no mapa do município, permitiu a identificação de cinco (5) grandes unidades morfoeestruturais na área. A primeira unidade (fig. 2) a mais alta (1300-1450m) ocupa cerca de 8,9% do território mapeado e é formada basicamente por rochas da Formação São João da Chapada. São rochas quartzxitas com composições que variam de 70 a 90% de quartzo, e de 25 a 30% de sericita (Almeida Abreu 1989). No centro oeste do município, parte desse domínio é encontrado sobre rochas da Formação Galho do Miguel. Estas rochas também compõem o principal substrato rochoso do segundo nível topográfico, compreendido entre 1200 e 1300m e perfazendo 25,37% da superfície total mapeada no Município. A Formação Galho do Miguel é caracterizada por ortoquartzitos finos, muito diaclasados o que possibilitou o desenvolvimento de um sistema eficiente de juntas e fraturas. Sobre estas rochas que foi elaborada a Superfície Chapadinha, ao norte de Cuiabá, correlativa à Superfície Guindá, próxima a Diamantina. Estas superfícies, pouco disseccadas pela drenagem quaternária, constituem remanescentes da superfície Sul-Americana, identificada por King em 1956. Ele atribuiu (1964) sua elaboração à predominância de processos de pedimentação no início do Cenozóico. Embora King (1964) tenha reconhecido a mesma superfície bastante disseccada e caracterizada por incisão de vales da "bacia do Paraná até a Bahia", em Gouveia, ela foi mantida com relativa estabilidade. Esta estabilidade está correlacionada principalmente aos aspectos litoeestruturais da geologia da área na qual a extrema permeabilidade das rochas do Supergrupo Espinhaço, através de seus sistemas de juntas e fraturas, retardou um entalhe mais eficiente da drenagem. A abertura dos vales do ribeirão da Areia e Chiqueiro e o recuo de suas cabeceiras só mostram eficientes porque exploram os eixos dos sinclinais e anticlinais. Esta abertura propiciou a coexistência, semelhante ao modelo de King, da Superfície Sul-Americana com outra, mais recente, a Velhas, do Terciário Superior.

Variações cíclicas parecem ter recorrido na área após o Pleistoceno Superior, marcando fases sucessivas de entalhe de canais de pequena ordem e seu entupimento por material coluvial. As fases de incisão linear tendem a recorrer nas mesmas porções da vertente, levando à manutenção de remanescentes de superfícies mais antigas nos interfúlvios. A pedogênese ocorrida no colúvio se processou, em grande parte, após o início do Holoceno (12.000 Ka),...
apontando para um recuo dessa instabilidade, o que propiciou o desenvolvimento de latossolos maduros (Augustin 1995). A fase atual é marcada por outra retomada erosiva induzida pela ação antropica, na qual associam-se erosão linear concentrada (voçorocamento), predominando em especial nas antigas áreas de instabilidade e a erosão em lençol, atuando no restante da vertente.

BIBLIOGRAFIA

Fig. 1: Mapa de localização e acesso

Fig. 2: Domínios altimétricos e respectivas porcentagens de superfície coberta
CONSIDERAÇÕES SOBRE A GEOLOGIA DA REGIÃO DE DESEMBARGADOR OTONI, PLANALTO DE MINAS, DIAMANTINA (MG)

ANA MARIA DIAS CHULA - CPMT/IGC/UFMG (Mestrando em Geologia)
LUIZ GUILHERME KNAUER - CPMT/IGC/UFMG-UNESP
PEDRO ÂNGELO ALMEIDA ABREU - CPMT/CGE/IGC/UFMG

INTRODUÇÃO

A região de Desembargador Otoni-Planalto de Minas (Folha Carbonita), a NE de Diamantina, pode ser considerada como área chave para a compreensão dos processos evolutivos da "Cadeia Espinhaço", já que situa-se próxima aos limites entre os segmentos Setentrional e Meridional. Este trabalho relata os resultados preliminares do mapeamento geológico (1:50.000) daquela região de Minas Gerais, em área de 280 km², ainda em andamento.

TRABALHOS PRÉVIOS E GEOLOGIA REGIONAL

A área em questão situa-se em um contexto geológico que pode ser simplificado a partir dos trabalhos de Pflug & Renger (1973), Schöll & Fogaça (1979) e Fogaça (1985), onde podem ser caracterizados no Arqueano, o Complexo Basal, predominantemente granítico/granitoide e o Supergrupo Rio Paraíba, englobando xistos, metavulcânicos e quartizitos.

A principal unidade da Serra do Espinhaço é a espessa sequência metassedimentar Mesoproterozoica, predominantemente quartzítica do chamado Supergrupo Espinhaço, dividida classicamente por Pflug (1968) em oito formações. As duas formações mais basais (São João da Chapada e Sopa-Bramadinho) apresentam importantes intercalações de filitos hemáticos, xistos verdes e metavulcanitanos ácidos (estes com idades U/Pb em zircões de 1715 +/- 2 Ma, Machado et al., 1989). O Supergrupo São Francisco (Pflug & Renger, 1973) inclui o Grupo Macaúbas (em parte de origem glacial), especialmente com metadiamictitos e outros metasedimentos clásticos, além de xistos verdes (Hettich, 1973), e o Grupo Bambuí, que representa importante sequência pelito-carbonática do Neoproterozoico.

LITOESTRATIGRAFIA

Foram reconhecidos na área, além da sequência com metadiamictitos correlacionada às seções basais do Grupo Macaúbas, três conjuntos litoestratigráficos informalmente designados de Unidade Quebra Pês, amplamente dominante, Unidade Tapera, que aflora na porção oeste, central e leste da Unidade Serra do Atalho, aflorando nas porções oeste e leste da área, todas formando faixas alongadas na direção norte-sul. Metariolitos, petrográfica e geoquimicamente semelhantes àqueles da região de Conceição do Mato Dentro (Renger, 1970) ocorrem como afloramentos descon-tínuos na direção norte-sul, aflorando no contato entre as unidades Tapera e Serra do Atalho ou intercalados nesta última.

A sequência mais antiga observada corresponde à Unidade Quebra Pês, especialmente caracterizada por xistos verdes que podem (cf. Schrank et al., 1978) ser separados em três "conjuntos": muciços, bandados e amigdaloidais. Os xistos verdes maciços podem preservar localmente estruturas vulcânicas incluindo pillow lavas e "brechas de pillow", podendo ser genericamente classificados como epidoito-actinolita xistos. Os tipos bandados preservam eventualmente amigdalas esféricas ou sigmoidais e estruturas do tipo "brecha de pillow", correspondendo a clorita-actinolita xistos e plagioclásio-quarto-actinolita xistos. Os xistos verdes amigdaloidais são epidoito-actinolita xistos com amigdalas milimétricas até centimétricas esféricas, preenchidas por plagioclásio (albita), epidoito, plagioclásio e epidoto, plagioclásio e clorita, ou clorita e epidoto. Rochas quartizíticas e filitos intercalam-se aos xistos verdes, possuindo origem vulcanoclastica.

A Unidade Tapera, intermediária, apresenta, quando não afetados por tectonismo, contatos tanto inferiores (com a Unidade Quebra Pês) como superiores (com a Unidade Serra do Atalho) marcantemente normais e concordantes. Predominam quartziotos finos e impuros com intercalações milimétricas até decimétricas de sericita-quarto xisto esverdeado. Intercalações de verdadeiros filitos de metamictes na forma de lentes descontínuas de pequena espessura (até 2 metros) podem aparecer, assim como intercalações métricas de xistos verdes, estas últimas mais comuns nas seções basais da unidade.

A Unidade Serra do Atalho mostra o predomínio de metarenitos de cor branca, finos a médios com grânulos esparsos, se bem que termos grosseiros e/ou féruginosos possam ser reconhecidos, assim como microconglo-merados daçto ou matriz-suportado. Metaconglo-merados polimíficos são mais raros, apresentando matriz quartizítica média e seixos de quartzo, quartzo branco e quartzito féruginoso.
Intercalações métricas de filitos hematíticos ocorrem localmente e, via de regra, estratigráficamente abaixo dos metariolitos. Estruturas sedimentares não são raras, incluindo estratificações cruzadas de pequeno a grande porte acanaladas e, mais comumente, tangenciais à base, cuja análise estatística inicial revela fluxo de oeste para leste.

GEOLOGIA ESTRUTURAL

O arranjo espacial das unidades litológicas mostra uma direção geral N-S, definindo faixas alongadas de larguras variáveis. As repetições das unidades e inversões estratigráficas observadas são decorrentes de falhas inversas que possuem vergência para oeste. A estrutura planar de maior distribuição nas rochas da região é uma foliação monilólica (Sn), planar e penetrativa de atitude N27°E/28°SE, subparalela ao acamamento de atitude N15°E/29°SE. Sobre esta foliação é comum a presença de uma pronunciada linhação mineral (Ln), de direção S85°E/28°, ressaltada pela orientação das palhetas de mica branca e prisms de anfibolito (tremolita-actinolita). Dóbras fechadas a abertas, assimétricas e com vergência geral para oeste estão presentes localmente. Os eixos destes dobramentos possuem orientação predominante S10°W/010°SW sendo, portanto, subhorizontal e subperpendiculares à linhação mineral. Outra estrutura impressa sobre a foliação Sn é uma linhação de crenulação cuja atitude mais frequente é S15°W/010°SW. Fraturas são marcantes e possuem direção principal N20°W/85°NE, porém atitudes aproximadamente E-W/subvertical também ocorrem. Sombras de pressão assimétricas, foliação S-C e sigmóides de quartzo são feições relativamente comuns em toda a área.

CONCLUSÕES

Considerando os dados apresentados anteriormente, assim como os contatos normais e concordantes entre as unidades Quebra Pés, Tapera e Serra do Atalho e a datação existente para o metariolito aflorante na área (1752 +/- 2 Ma, U/Pb em zircões, Machado et al., 1989), algumas conclusões importantes podem ser apresentadas:

1) A Unidade Quebra Pés, com suas pillow lavas preservadas, representa vulcanismo subaquático em corpo de água que é progressivamente assoreado durante a deposição das rochas incluídas na Unidade Tapera (de características em parte lacustrinas);

2) A Unidade Serra do Atalho representa ambientes fluviais com retrabalhamento eólico localizado, correspondendo ao completo assoreamento da calha lacustrina original;

3) As três unidades podem ser correlacionadas à base do Supergrupo Espinhaço na região, evidenciando os processos iniciais de sua fase rígra, com magmatismo inicial de provável caráter binodal.

4) A associação das estruturas descritas no item Geologia Estrutural, permite a definição de um evento deformacional principal marcado por transporte de leste para oeste, heterogêneo, e nitidamente tangencial, o que é similar com outras regiões da Serra do Espinhaço Meridional (Almeida Abreu et al., 1986b; Knauer, 1990 e Rolim, 1992).

BIBLIOGRAFIA

MINERAÇÃO E PERCEPÇÃO AMBIENTAL NA TOPONÍMIA DA MESOREGIÃO DO JEQUITINHONHA

JOSÉ ANTÔNIO SOUZA DE DEUS - IGC/UFMG
MARLY NOGUEIRA - ICG/UFMG

O Vale do Jequitinhonha e, particularmente a região de Diamantina se destacam pela beleza de suas paisagens naturais, e também por seu rico acervo histórico-cultural vinculado à saga da mineração e dos garípmos, bases da economia regional desde os primórdios da ocupação do território. A vegetação do Distrito Diamantino, para os cronistas do século XIX, era a mais peculiar e bem formada flora dos campos observada no Planalto. Os viajantes assinalaram também, na Época, a presença de uma fauna típica, característica do Sertão (Spix & Martius 1981). Já as lavras exploradas na região, que eram puramente auríferas até o ano de 1729 (quando foram também descobertos o diamante, o topázio e outras pedras preciosas e semipreciosas) atraíram forasteiros de todas as procedências para estas terras, até então, virgens (Costa 1970; Santos 1976). À medida que declinava o ciclo minador em outras regiões, levava de aventureros dirigiam-se para as bacias dos rios Jequitinhonha e Araçuaí. A partir de 1800, os mineradores invadiram assim o território imemorialmente habitado pelos pacificos índios Maxacalis, no norte de Minas (Deus 1994). Em áreas de matas fechadas e quase impenetráveis se exploravam então, as gemas, sempre com o risco de um assalto de índios combativos como aqueles (da Nação Borun) que surpreenderam Spix e Martius, a caminho de Minas Novas, em 1818. Para investigar a influência da mineração, e os valores atribuídos ao Lugar pelos diferentes povos e culturas que desde tempos remotos ocuparam a região (europeus, índios e negros), tentamos discutir e analisar, sob a ótica da percepção ambiental, os registros toponímicos e os mecanismos de natureza topofílica, visíveis ou disponíveis nas cartas da Microrregião Geográfica de Diamantina (pesquisada em nível de detalhe) e da Mesoregião do Jequitinhonha (investigada em nível mais geral). Falar de culturas é, evidentemente, falar de caminhos e dinâmicas diferentes, modos diversos de organizar, promover e defender a vida. É as diferentes culturas não devem ser encaradas como obstáculos, mas como realidades enriquecedoras para todos. Para Aleksander Solzhenicyn, as culturas e as nações são as cores da humanidade (Valente 1995). E a toponímia, difusa como conceito, vívida e concreta como experiência pessoal, é o elo afetivo entre o indivíduo, sociedade ou cultura com o lugar ou ambiente físico (Tuan 1980). Em pesquisa similar, que realizamos anteriormente (Deus 1992), na região do Quadrilátero Ferrífero, tivemos a oportunidade de observar o caráter naturalista da toponímia (e percepção do espaço) indígenas, e o forte viés economicista ou religioso da toponímia de origem européia. Tal fato demonstra, por um lado, a natureza ecológica das culturas ameríndias e, por outro lado, o caráter ambivalente da conquista européia (em termos clássicos já indiscutivelmente notabilizada como veículo de expansão da fé, e de exploração de riquezas, sobretudo minerais). Embora registros toponímicos de origem indígena ou africana não sejam muito comuns na Mesoregião do Jequitinhonha e Microrregião de Diamantina, as conclusões obtidas no Quadrilátero podem ser fundamentalmente validadas a fortiori. De fato são sugestivamente, de caráter ecológico, as denominações indígenas de diversas localidades, rios e acidentes físicos situados na região: "O Rio das Grandes Ananás" (Rio Araçuaí), "Águas Claras" (Itinga), "O Rio das Pedras ou dos Seixos Rolados" (Itamarandiba), "O Rio dos Acará" (Caraí), "O Rio dos Curimãis" (Curimãi), "O Rio das Capivaras" (Capivari), "Correntezas" (Inhaú), "Rio Negro" (Parutin), "Banco de Seixos" (Itiapava), "A Pequena Mata Virgem" (Caeté-Mirim), "Morro Agudo" (Itambé), "Morro Redondo" (Itapirapuá)- Gregório 1980. São bastante comuns, na toponímia europeia, as denominações com forte vínculo com a atividade mineral (Diamantina, Pedra Azul, Minas Novas, Datas. Berilo, Turmalina, Carbonita, Prata, Extração, Lavras, Lavrinhas, Pedreira, Serra dos Cristais, etc.) ou religiosa (Virgem da Lapa, São João da Chapada, Santa Maria do Salto, Novo Cruzeiro, Capelinha, São Gonçalo do Rio das Pedras, São José da Caetoeira, Santo Antônio do Itambé, Santo Antônio do Norte, Abadia, Campo de São Domingos...), embora também existam muitos topônimos de origem portuguesa de natureza geográfico-ecológica, ou de caráter econômico ligados a outras atividades produtivas - agrícola, pastoril, etc. (Barbosa 1971). A mineração influenciou significativamente os mais importantes topônimos da Mesoregião do Jequitinhonha, tendo a atividade contribuído também (embora menos expressivamente) para a denominação dos acidentes físicos, cursos fluviais e localidades menores na Microrregião de Diamantina. Interesses econômicos idênticos e preocupações similares de caráter místico ou ecológico, estiveram, portanto, igualmente presentes entre os diferentes vetores ou segmentos culturais na área central (a grande "área core"...) de
Minas Gerais, ou seja, a região que se estende desde o Quadrilátero Ferrífero (ao sul) até a região de Diamantina (ao nordeste do estado).

BIBLIOGRAFIA

O GRUPO CONSELHEIRO MATA NO SEU QUADRO PALEOGEOGRÁFICO E ESTRATIGRÁFICO

HENRI DUPONT - IGC/UFGM

O embasamento aflora em quatro regiões diferentes. Na região de Gouveia, está em contato com várias formações ou sequências do Grupo Diamantina desde a base até a Formação Galho do Miguel. Na região de Itacimirá, o embasamento é recoberto por uma pequena espessura de fácies fluviais e eólicos do Espinhaço inferior. Em Correntina (Ba), Januária e Calheiros (Go), uma espessura reduzida das fácies do Grupo Bambuí recobre o embasamento e a região representa um dos maiores e mais estáveis paleoaltos do crato durante a deposição dos supergrupos Espinhaço e São Francisco. A região situada entre Belo Horizonte e Sete Lagoinhas estava também exposta durante a sedimentação das fácies do Espinhaço. Neste quadro, apresentamos um esboço da estratigrafia do Grupo Conselheiro Mata na região de definição do Grupo e a sessenta quilômetros de distância, na borda leste da Serra do Cabral.

Na região de Conselheiro Mata afloram as cinco unidades do grupo, com uma espessura aproximada de 800 metros. Na Serra do Cabral afloram apenas as duas unidades inferiores: a Formação Santa Rita com aproximadamente 90 metros e a Formação Côrrego dos Borges, localmente erodida pelo evento glacial Jequitibá, com uma espessura máxima de 50 metros. Apesar de não ter continuidade entre as duas áreas, não há dúvida a respeito desta correlação litológica. Da base para o topo, superpõem-se as Formações Santa Rita, Côrrego dos Borges, Côrrego da Bandeira, Côrrego Pereira e Rio Pardo Grande. As Formações Santa Rita, Côrrego da Bandeira e Rio Pardo Grande são constituídas de fácies de granulometria fina, podendo existir localmente porções areníticas. São consideradas pelos autores anteriores, fácies transgressivas de plataforma pouco profunda. As Formações Côrrego do Borges e Côrrego Pereira são constituídas de arenitos e consideradas pelos autores anteriores, fácies de plataforma rasa.

A transição entre a Formação Galho do Miguel e a Formação Santa Rita é muito bem exposta na borda leste da Serra do Cabral, no Côrrego Embaissaia situado 2 km ao sul de Joaquim Felício. Consiste em cinco ríteis de granulometria crescente. Os 4 ríteis inferiores com espessura média de 15 metros apresentam nas partes superiores areníticas, um grande número de estratificações oblíquas acanhaladas com direção do fluxo para 180° - 220°. O quinto ríte de apenas 6 metros de espessura, de granulometria também crescente difere dos inferiores pela predominância de camadas de arenito bem estratificado, mais finas e com numerosas marcas de onda bastante simétricas e bifurcadas. Estes ríteis são interpretados como resultado de controle acíclico em ambiente de canais deltânicos passando verticalmente para ambiente mais litorâneo (quinto ríte). É característico o padrão de paleocorrente com transporte para sul em vários ríteis semelhantes observados na mesma posição stratigráfica, em outros córegos da borda oriental da Serra.

A Formação Santa Rita, bem exposta com um pouco mais de 100 m de espessura em Joaquim Felício e constituída de dois membros de litologias finas separadas por um membro arenítico, representa uma ilha em barreira transgressiva. O membro basal é a fácies lagunar e o membro superior a parte plataformal (Figueiredo & Corgozinho, 1993). Em todas as seções observadas, os diques de areia pós-sedimentares encontram-se apenas nas fácies lagunares, as vezes junto com ríteis decimétricos com microbrecha sinisheden-tar basal que marca eventos de tempo depestade.

A Formação Côrrego dos Borges aflora na Serra do Cabral em um máximo de 40 metros de areno de fácies litorânea com marcas de ondas simétricas e assimétricas abundantes e estratificações oblíquas de direções variadas. É considerada progredente sobre o membro superior da Formação Santa Rita de litologia mais fina e a observação, nas escarpas, do contato das duas litologias, confirma um contexto interdigitado progredente.

A Formação Côrrego da Bandeira aflora a leste de Conselheiro Mata com cerca de 100 metros de espessura de silicilásticos finos, encerrando um membro de areno com estratificações oblíquas de direções de fluxo variadas. Representa o segundo afogamento da plataforma silicilástica.

A Formação Côrrego Pereira com 250m de espessura segundo os autores anteriores, é constituída de arenitos localmente feldspátiicos. Um mapeamento de detalhe executado com alunos da UFMG, mostrou que a parte principal do pacote de arenitos apresenta quase unicamente estratificações oblíquas acanhaladas
de pequeno a grande porte, invariavelmente apontando o transporte para norte. Setenta medidas de paleocorrentes foram computadas na área. Apenas nas camadas da base e do topo da formação, foram observadas direções de paleocorrentes variadas. Essas observações interpretam a Formação Córrego Pereira da região de Conselheiro Mata como uma planície aluvial progradando para norte, sobre os silicilásticos finos do topo da formação Córrego da Bandeira.

Na Serra do Cabral os sedimentos deixados pelo evento glacial Jequitai (diamictitos e varvitos) repousam por contato erosivo escarpado sobre os ritmos transgressivos do topo da Formação Galho do Miguel até os arenitos da Formação Córrego dos Borges. Não há no local argumento para considerar uma discordância angular. A base do Bambuí é constituída por 2000m de lutitos, sotopostos ao primeiro nível carbonatado e formando em conjunto o primeiro dos três ritmos de batimetría decrescente do Bambuí.

Neste esquema estratigráfico, o Grupo Conselheiro Mata e formado pela superposição de três sequências deposicionais com uma parte basal transgressiva e de uma parte superior progradante, e subdividido por três superfícies de afogamento máximo situadas nas Formações Santa Rita, Córrego da Bandeira e Rio Pardo Grande. Os contactos Santa Rita/Córrego dos Borges e Córrego da Bandeira/Córrego Pereira são interdigitados e cada vez mais jovens na direção da progradação. Os dois últimos afogamentos não atingiram necessariamente a Serra do Cabral onde talvez as Formações Córrego da Bandeira, Córrego Pereira e Rio Pardo Grande jamais foram depositadas. Este esquema deve servir como modelo preditivo, na procura de contatos erosivos e interdigitados e ajudar no mapeamento.

REFERÊNCIAS BIBLIOGRÁFICAS

Perfil estratigráfico do Grupo Conselheiro Mata.
IDADE DO SUPERGRUPO ESPINHAÇO: DETERMINAÇÃO 207Pb/206Pb PELO MÉTODO DE EVAPORAÇÃO DO Pb SOBRE MONOZIRCÕES DE METAVULCANITOS SINSEDIMENTARES

TÂNIA M. DUSSIN - IGC/UFMG
IVO A. DUSSIN - IGC/UFMG
PHILIPPE ROSSI - BRGM/Orleans
JACQUES CHARVET - Université d’Orleans

ABSTRACT

A série de K- and Fe-rich metavolcanic rocks is coeval with continental sediments of the Espinhaço Supergroup. The results of a single zircon dating of these rocks by step-wise Pb-evaporation, yielded ages of 1710 ± 12 Ma for the crystallization of the volcanic protolith. This age indicates the initial magmatic activities related to Espinhaço rifting processes and is interpreted as the age of deposition of the Espinhaço Supergroup.

INTRODUÇÃO

A porção meridional do cinturão de dobramentos Araçuaí, na borda sudeste do Craton São Francisco, é formada em grande parte pelo Supergrupo Espinhaço, uma espessa sequência metasedimentar do tipo rift. A idade desta sequência constitui um dos maiores problemas da geologia regional e tem sido assunto de contínuas controvérsias. A fim de contribuir para a elucidação desta questão, determinações radiométricas 207Pb/206Pb foram realizadas sobre zircões de rochas metavulcânicas intercaladas na base do Supergrupo Espinhaço, bem conhecidas sob a designação informal de filito hematítico. Os resultados destas análises são aqui apresentados.

O rift Espinhaço representa uma bacia de direção submeridiana que se estende do Quadrilátero Ferrífero para norte por mais de 1500 km de extensão, cortando embasamento gnáissico arqueano e suas intercalações vulcano-sedimentares. O preenchimento da bacia é representado por espessas camadas de quartzitos com intercalações de metaconglomerados e filitos, que se dividem em duas grandes unidades: uma sequência basal representada por metasedimentos fluviáceos e marinhas rasos depositados durante a fase principal de rifting e uma sequência superior de metasedimentos marinhas que representa uma sedimentação pós-rift de caráter transgressivo.

Rochas vulcânicas aparecem na parte inferior da unidade basal em intercalação com os sedimentos das formações São João da Chapada e Sopa-Brumadinho. A mineralogia essencial destas rochas, sericita e óxidos de Fe-Ti, é metamórfica mas texturas e estruturas magnáticas estão localmente preservadas. A despeito da forte alteração secundária destas rochas, seu conteúdo em elementos litófilos reputados como relativamente imóveis, especialmente Zr, Y e REE são indicativos de que estas rochas representam magmatismo alcalino relacio-nado ao estágio inicial de rifting (Dussin et al., 1995).

PROCEDIMENTOS ANALÍTICOS E RESULTADOS

Um horizonte de lavas de aproximadamente 30 metros de espessura intercalado com quartzitos fluviáis da Formação São João da Chapada que recobrem gnaisses do embasamento próximo à localidade de Barão de Guaicuí, aproximadamente 20 km a sudoeste de Diamantina, foi escolhido para estudo geocronológico. Frações de minerais pesados foram obtidas por trituração e separação de cerca de 150 kg de amostras. As frações obtidas foram processadas por peneiramento, separação magnética e gravimétrica. Cristais de zircão escolhidos para análise são limpidos, rosados e sem núcleos herdados e foram selecionados a partir da população mais representativa definida a partir de um estudo de morfologia de zircões. Os cristais selecionados são caracterizados por uma grande constância no arranjo das faces com cristais prismáticos (100) e piramidais (101), que plotam no campo D do diagrama tipológico de Pupin (1980). As análises isotópicas foram efetivas pelo método da evaporação direta do Pb por intervalos de temperatura que fornece idades 207Pb/206Pb. A técnica e o método de cálculo das idades estão descritos por Kober (1987).

média de idades de 1710 ± 12 Ma, calculada com base em 109 determinações realizadas (Tabela 1 e Figura 1). Esta idade é interpretada como idade de cristalização do zircão e do fluxo de lavas.

CONCLUSÕES

Os resultados obtidos representam a idade de deposição do Supergrupo Espinhaço indicando o período inicial de abertura da bacia. Os dados indicam que as manifestações vulcânicas iniciais no rift são contemporâneas à intrusão de granitos ricos em álcalis da Suíte Borrechados na borda sudeste da bacia (regiões de Guanhães-Itabira) os quais tem idades de 1729±12 Ma (Pb/Pb sobre zircões; dados de Dossin et al., 1993) e à extrusão de magmas riolíticos associados a grandes falhas tensionais NS na borda leste da cordilheira (região de Conceição do Mato Dentro) com idades entre 1711 e 1770 Ma (U/Pb sobre zircões; dados de Brito Neves et al., 1979 e Machado et al., 1989). Todos estes eventos magmáticos são relacionados à fraturação da crosta mesoproterozoica de características rígidas e implicam nãa perturbação térmica no manto subjacente neste período.

REFERÊNCIAS

<table>
<thead>
<tr>
<th>Cristais</th>
<th>Tipo</th>
<th>Intervalos de Evaporação</th>
<th>Número de Razões</th>
<th>T (°C)</th>
<th>(\frac{\text{U-Pb}}{\text{Pb}}) (mMio)</th>
<th>(\frac{\text{U-Pb}}{\text{Pb}}) ±σ</th>
<th>Idade ±σ (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td>S24-S25</td>
<td>1</td>
<td>1500</td>
<td>7480</td>
<td>0.0770±0.039</td>
<td>1122±10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1520</td>
<td>18400</td>
<td>0.0958±0.054</td>
<td>1544±11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1560</td>
<td>25130</td>
<td>0.1029±0.073</td>
<td>1678±13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1590</td>
<td>7740</td>
<td>0.1043±0.087</td>
<td>1702±15</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>D</td>
<td>1</td>
<td>1520</td>
<td>8260</td>
<td>0.1051±0.074</td>
<td>1717±13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1560</td>
<td>13390</td>
<td>0.1048±0.055</td>
<td>1711±7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1590</td>
<td>3190</td>
<td>0.1040±0.057</td>
<td>1698±10</td>
</tr>
</tbody>
</table>

| | | 1/4+2/3 | 94 | | | | 1711±12 Ma |

Tabela 1: Dados isotópicos obtidos por evaporação de grãos de zircão dos filitos hematíticos (Barão de Guaíluc, Minas Gerais).
Figura 1: Histograma mostrando a distribuição de idades $^{207}\text{Pb}/^{206}\text{Pb}$ em relação ao número de razões obtidas por evaporação de cristais de zircão dos filitos hematíticos.
OCORRÊNCIA, MORFOLOGIA E OBSERVAÇÕES DE MICROESTRUTURAS DAS CONCREÇÕES FERRUGINOSAS, ENCONTRADAS NA REGIÃO DE DIÂMANTINA, SERRA DO ESPINHAÇO

HEINRICH ADOLF HORN - CPMTC/IGC/UFMG
GERALDO NORBERTO CHAVES SGARBI - IGC/UFMG
REINHARD WEYL - Siemens AG, ZFE-T-MR 2, München-Perlach, Alemãnia
CIBELE TEIXEIRA PAIVA - CPMTC/IGC/UFMG - Bolsista IC-PRPq/CNPq

INTRODUÇÃO

Foram observadas concreções ferruginosas de corte circular e de forma esférica, às vezes achatadas, na área da Folha topográfica de Diamantina (1:100.000), nas formações São João da Chapada e Sopa-Brumadinho do Super Grupo Espinhaço. Essas concreções são constituídas de um núcleo de óxido de ferro, de um seixo ou de um centro atualmente vazio. Camadas formadas por óxidos ou hidróxidos de ferro, se agregam concentradamente envolvendo todo o núcleo (Schöll & Fogaça 1981, Horn & Sgarbi 1992). Foram observados concretões em unidades do Super Grupo Espinhaço: CFH-concr. filito hematítico no nível B; CAM-concr. Altitude Máxima no nível E; CH-concr. no Membro Campo Sampaio. Outras foram observadas superpostas a meta-magmatitos: CDD-concr. dique máficos Datas; CS-concr. Serro no colúvio de ultramáficos. As concreções se subdividem em dois grupos distintos - o grupo pré-cambriano (GP: CAM, CFH, CH) e o grupo Terciário/Quaternário (GTQ: CDD, CS), sendo que o último não se constitui em objeto deste artigo. O primeiro grupo se divide nas concreções observadas nos quartizitos (CAM) e no filito hematítico (CFH) e nas que ocorrem em filito (CH).

MORFOLOGIA, COMPOSIÇÃO PETROGRAFIA E QUÍMICA

Devido ao fato de que as concreções CAM e CFH se apresentam tecnicamente compreendidas, sua idade deve estar limitada entre a idade de deposição dos meta-sedimentos encaixantes e da idade da Orogenia Brasiliana. A formação do grupo CH se deu antes da sedimentação do Membro Campo Sampaio, testemunhado entre outros fatos pelas estruturas de fluxo que as envolvem. Tipos CAM: Foram descritas pela primeira vez por Schöll & Fogaça (1981) e divididos em três subtipos CAM 1, 2 e 3 por Horn & Sgarbi (1992). Elas são de pequeno a grande porte (até 80 cm), de forma esferoidal achatada e ocorrem dentro de uma matriz quartozita de granulação média, com grãos de quartzo poli- ou monocristalino misturados com grãos côlicos. O óxido de ferro está aprisionado na superfície dos grãos de quartzo por crescimento sintaxial causado por metamorfismo (xisto verde) e deformação incipiente. A composição química destes é semelhante a composição da matriz, porém com teores elevados em Fe, P, Mn e altos valores de P.F. Bandas de óxido de ferro ocorrem em determinados níveis nesta unidade os quais são explicados como originados por achatamento das concreções, o que é apoiado pela semelhança da composição química e das estruturas internas. Tipo CAM 1: Ocorrem com até 25 cm de diâmetro e formaram-se em volta de uma cavidade atualmente vazia ou preenchida por material poroso (óxidos e hidróxidos de ferro). As esferas são bastantes visíveis. Tipo CAM 2: Possuem até 15 cm de extensão, são muito homogêneas e não têm um núcleo definido. A composição é semelhante a das concreções CAM 1 e dos níveis quartzo-hematítico. Tipo CAM 3: Ocorrem com diâmetro até 80 cm, sempre formados em volta de um seixo de quartzo, quartzito ou sericita-quartzito xisto ou mesmo contém metapelito ou filito hematítico no seu núcleo. Nas concreções maiores existem, às vezes, estruturas esferoidais secundárias (gerações filiais ?). Tipo CFH: Desenvolvidas com até 20 cm de extensão, são encontradas nas contribuições sedimentares do filito hematítico. A composição química é bem diferente das lavas máficas onde foram descritas estruturas circulares formadas por fluxo magmático (Dussin 1994) com teores maiores em Fe, Mn, P e metais pesados. Tipo CH: Até 15 cm e de forma circular-elargada. Ocorrem sem deformação visível dentro de uma matriz de material argiloso com seixos dispersos. Em vola dessas concreções observa-se estruturas de fluxo de deposição sedimentar.

TRATAMENTO

Para investigações sobre a origem das concreções, orgânica ou inorgânica, foram preparadas várias amostras para serem analisadas por diferentes métodos apropriados:

A. As amostras foram cortadas, as concreções separadas da rocha encaixante, moídas e as análises efetuadas via úmida.
b. Todas as amostras foram serradas em fatias e cortadas em seções de cerca de 4x2x1 cm. Algumas delas foram quebradas antes da metalização e as superfícies irregulares investigadas. Em outras fatias foram investigados os Planos serrados ou serrados-polídos. Nas demais investigaram-se superfícies atacadas por HF, HCl, H₂SO₄ e HNO₃, todos concentrados, e vapor de HF concentrado por períodos diferentes. As amostras após o acima citado, foram cobertas por uma camada de carbono ("sputtering") para a investigação com ajuda da microscopia eletrônica de varredura (MEV) com fluorescência de raios X acoplada (frx) onde foram feitas fotografias de imagens dos elétrons "backscattered" e "secondary", além de observações dos raios X emitidos.

CONCLUSÕES

1. Foi mostrado, que o tratamento da superfície é extremamente importante para a observação das micro-estruturas existentes nas amostras.
2. As concreções ocorrem dentro de unidades do Super Grupo Espinhaço.
3. Todas tem forma esferoidal e uma estrutura interna formada por camadas alternadas, de óxido-hidróxido de ferro e quartzo-argilomerais-micas.
4. Eles se desenvolveram em volta de um núcleo formado por óxido/hidróxido de ferro ou de um espaço atualmente vazio ou de seixos de composição variada.
5. Sua composição é semelhante a rocha encaixante, porém com teores alterados em Fe, P, Mn e alguns elementos tracos. Existem porém semelhanças entre as concreções CAM 1 2 CAM 3 e os níveis quartzo-hematítico e entre as concreções CH e CHF.
6. Todas as concreções do grupo GP, sem as concreções CH, que estão dentro de "debris flows", foram comprimidas: (achatadas) da diagênese e deformadas por processos tectônicos (Brazillian ?)
7. Observa-se que nas concreções CAM, CHF e raramente nos tipos CH estruturas circulares separadas e/ou em conjunto do tipo cacho de uva, cadeia e/ou colar de pérolas:
 a. Determinaram-se dois tipos de estruturas orgânicas circulares, um tipo com aparência escura e outra clara nas imagens "secondary" da MEV
 b. Estruturas de seção circular, entre 10 e 20 μm com uma película fina (0.2 à 0.5 μm) de óxido ou hidróxido de Fe, envolvendo e separando um núcleo de quartzo do quartzo da rocha em volta
 c. Conjuntos em forma de "cacho de uva" com indivíduos do mesmo tamanho mencionados anteriormente e com a forma esférica com superfície lisa (10 à 25 μm de diâmetro; semelhante às estruturas descritas por Duhig et al., 1992)
 d. Indivíduos (10 à 15 μm) ocorrem ligados entre si por articulações em forma de cordão e/ou tubos, formando cadeias
 e. Agrupamentos de indivíduos formando colares e cordões (até 150 μm, indivíduos até 15 μm)
8. As análises com ed-FRX mostraram a ocorrência de S, Si e Fe, às vezes F nas estruturas consideradas orgânicas.

BIBLIOGRAFIA

A EVOLUÇÃO PALEOGEOGRÁFICA DA TECTONOSSEQÜÊNCIA
SOPA-BRUMADINHO, BACIA ESPINHAÇO, FASE RIFTE, NA
REGIÃO ENTRE SOPA E GOUGEIA (MG)

MARCELO A. MARTINS NETO - DEGEO/EM/UFOP

A Tectonosseqüência (TS) Sopa-Brumadinho (cf. Martins Neto, 1995a) corresponde à Associação
dobrada da Formação Sopa-Brumadinho de
Pflug (1968), ou a Fin. Sopa-Brumadinho de
Schöll &
Fogaça (1979) e Schöll (1980) excluindo-se a “fácies
quartzítica” do nível E. A TS Sopa-Brumadinho
representa os depósitos da quarta fase evolutiva da
Bacia Espinhaço, terceira e principal etapa da sua fase
base por uma proeminente discordância angular e
erosiva e no topo por uma superfície transgressiva
marinha, esta unidade possui espessuras variando entre
100 e 200 m na área estudada. A Tabela 1 sintetiza as
fácies sedimentares presentes e suas interpretações.
Descrições detalhadas destas fácies e dos processos
sedimentares geradores podem ser vistos em Martins

As fácies encontram-se usualmente agrupadas em
intervalos tectono-deposicionais (ITD) (sensu Da
Silva, 1993) mediante arranjos em “coarsening-
to
fining-upward” (CU-FU). Cada ITD representa um
evento deposicional que começa com pelitos de
origem lacustre em sua base (Fig. 1). O surgimento de
camadas turbidífricas (Fácies Sg) intercalados nos
pelitos marca o início de um evento progradacional.
Com a instalação gradativa de condições cada vez
mais proximais, arenitos das fácies Sm, Sh, St e Sp
ocorrem na sucessão, sendo sucedidos então por
conglomerados, completando assim a porção em CU
do ITD. Com o fim da sedimentação rúdica, arenitos
ocorrem novamente na sucessão, caracterizando assim
seu final em FU. Cada ITD resulta portanto da
progradação de lobos deposicionais, que evoluem com
o tempo de condições distais (subaúnticas) a
proximais (subaéreas). A porção em FU representa a
fase de abandono do lobo deposicional. Três ITDs
podem ser reconhecidos na seção das lavras
diamantíferas Diamante Vermelho/ Lavrinha (Figs. 1
da 2). Diferenças na taxa de substência e suprimem
sedimentar entre diferentes compartimentos da bacia
são sugeridas pela evolução distinta de seus ITDs (Fig.
1).

A origem, características e a distribuição espacial
das fácies, a intercalação de depósitos tráctios com
fluxos gravacionais de sedimentos, a predominância
de conglomerados de fluxos gravacionais de
sedimentos sobre os de origem arta, o padrão de
paécocorrentes semi-radial medido e o reconhecimento
de ambientes deposicionais subaéreos e subaúnticos
associados indicam conjuntamente um sistema fan-
deltáico lacustre para a deposição desta
tectonosseqüência, conforme a terminologia de Nemec
& Steel (1988). Uma interação de diversos controles
aloícicos e acíclicos provavelmente determinou a
evolução dos fans. Isto é sugerido pela ocorrência de
fluxos gravacionais de sedimentos variando de
correntes de turbidez a fluxo de detritos coesivos (ver
Martins Neto, 1995c, neste simposio) intercalados
com depósitos tráctios, pelo arranjo interno dos ITDs
e suas características texturais, bem como pela
presença de evidências do tectonismo extensional
sinsedimentar. Os primeiros autores a propor um
ambiente fan-deltáico para a então Fm. Sopa-
Brumadinho foram Almeida Abreu et al. (1986).
Entretanto, estes autores se basearam no conceito
original de Holmes (1965) que definia fan-deltas como
“leques aluviáes depositados em uma massa d’água”.
Nemec & Steel (1988) propuseram a definição hoje
internacionalmente aceita para fan-deltas, que se
baseia no reconhecimento da porção subaúntica do
leque aluvial e na descrição e interpretação de suas
fácies e processos sedimentares.

Quando os processos associados ao rifreamento
compartimentaram a bacia em blocos falhados e
graben de direção N-S consequentemente foram
individa-lizados, a subsíndia colocou-os abaixo do
d nível de base e os lagos se formaram como resposta
direta ao relevo diferencial entre a área fonte
e a bacia subsidida, dando início à progradação dos
fan-deltas nos lagos. Deposição conglomerática teve
lugar quando detritos cascalhosos encontravam-se
disponíveis nas bacias de captação. O arranjo em CU
de cada ITD indica aumento da proximalidade em
direção ao topo, com depósitos distais mais antigos
sendo encobertos por depósitos mais proximais. O
topo em FU sugere arrasamento da área fonte. Pulses
tectônicos condicionaram subidas recorrentes do nível
do lago e rejuvenescimento da área fonte,
controlando as sucessivas fases progradationais que
levaram ao desenvolvimento dos ITDs superpostos,
sugerindo assim que o caracter episódico da
subsiúndia determinou a arquitetura do
preenchimento da bacia. Basculamento de blocos no
sentido horário associado com subsidência durante a
evolução de alguns grabens é indicado pela relação
espacial entre fases progradationais de fan-deltas,
onde um corpo mais novo desenvolve-se na porção
distal de um mais antigo. Isto também sugere uma geometria assimétrica para os grabens. O graben representado pelo perfil das lavras Diamante Vermelho/Lavrinha/Brumadinho (Fig. 2) ilustra bem esta evolução. Os fans do lado oeste do graben mostram um padrão progradacional enquanto os depósitos de talus adjacentes a falha da borda leste do graben na Lavra Brumadinho mostram um padrão agradacional, indicando assim um basculamento no sentido horário e uma geometria assimétrica para este graben. O sistema Diamante Vermelho/Lavrinha caracterizaria então “hanging-wall sourced fans” e os conglomerados de talus da lavra Brumadinho depósitos derivados do “footwall”. Falhas normais subsidiárias e prováveis falhas de transferência estão preservadas nos depósitos da TS Sopa-Brumadinho (Martins Neto, 1993; 1995b). Condições aluviais na área estudada terminam com uma transgressão marinha que marca o topo da TS Sopa-Brumadinho e o fim da fase rítmica da Bacia Espírito-Santo.

REFERÊNCIAS BIBLIOGRÁFICAS

<table>
<thead>
<tr>
<th>Fácies - Feições</th>
<th>Interpretação</th>
</tr>
</thead>
<tbody>
<tr>
<td>conglomerados</td>
<td>fluxo de detritos não coesivos</td>
</tr>
<tr>
<td>clasto-</td>
<td></td>
</tr>
<tr>
<td>suportados</td>
<td></td>
</tr>
<tr>
<td></td>
<td>maceiros</td>
</tr>
<tr>
<td></td>
<td>gradação inversa</td>
</tr>
<tr>
<td></td>
<td>gradação normal</td>
</tr>
<tr>
<td></td>
<td>estratificação incipiente</td>
</tr>
<tr>
<td></td>
<td>maceiros, grosseiros, imaturos</td>
</tr>
<tr>
<td></td>
<td>depósitos de talus</td>
</tr>
<tr>
<td>conglomerados</td>
<td>fluxo de detritos não coesivos</td>
</tr>
<tr>
<td>matriz-suportados</td>
<td></td>
</tr>
<tr>
<td></td>
<td>matriz arenosa</td>
</tr>
<tr>
<td></td>
<td>matriz pelítica</td>
</tr>
<tr>
<td></td>
<td>fluxo de detritos coesivos</td>
</tr>
<tr>
<td>arenitos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sm = maceiros</td>
</tr>
<tr>
<td></td>
<td>Sh = estratificação horizontal</td>
</tr>
<tr>
<td></td>
<td>St = estr. cruzada acanalada</td>
</tr>
<tr>
<td></td>
<td>Sp = estr. cruzada planar</td>
</tr>
<tr>
<td></td>
<td>Sg = gradação normal</td>
</tr>
<tr>
<td></td>
<td>“sheetfloods”</td>
</tr>
<tr>
<td></td>
<td>migração de dunas 3-D</td>
</tr>
<tr>
<td></td>
<td>correntes de turbidez</td>
</tr>
<tr>
<td></td>
<td>lacustric / acretion vertical</td>
</tr>
<tr>
<td>pelitos</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 1) Seções medidas na Tectonosequência Sopa-Brumadinho. A Seção 1 foi medida nas lavras Diamante Vermelho e Laurinhina e a Seção 2 na Lavra de Sopa. ITD = Intervalo Tectono-Depositional; ED = Evento Depositional (modificado de Martins Neto, 1993).

FIG. 2) Perfis levantados na Tectonosequência Sopa-Brumadinho na região entre Sopa e Guinda (modificado de Martins Neto, 1993).
A EVOLUÇÃO TECTONO-ESTRATÍGRÁFICA DO RIFTE ESPINHAÇO NA REGIÃO DE SOPA/GUINDA (MG) E SUA IMPLICAÇÃO NAS MINERALIZAÇÕES DIAMANTÍFERAS

MARCELO A. MARTINS NETO - DEGEO/EM/UFOP

Na região estudada, estes conglomerados são tipicamente clasto-suportados e mal selecionados (polimodais), com uma suíte de clastos relativamente restrita (Fig. 1a, b). Estes clastos variam de angulares a bem arredondados, associados a uma matriz arenosa grossa-se. O tamanho dos clastos é geralmente na faixa dos calhaus (cobblets), embora grandes seixos e pequenos blocos (boulders) são também comuns. Blocos anomalous grandes as vezes maiores que 1 m ocorrem localmente, sendo usualmente subangulares e compostos por arenitos. Apesar de pequenas variações nas características dos clastos entre fan-delts ao longo da área, apenas uma petrofacies pode ser definida, refletindo a composição da área fonte.

Uma vez que os processos inerentes à deposição por fluxos gravitacionais de sedimentos não levam ao arredondamento de clastos, a considerável proporção de clastos sub a bem arredondados nos conglomerados Sopa-Brumadinho indica que uma grande proporção de clastos sofreu transporte e retrabalhamento antes de sua redeposição como fluxos gravitacionais de sedimentos na superfície dos fan-delts. Como quantos de veio e riolito são litologias ultraduráveis que necessitam de um retrabalhamento considerável para tornarem-se arredondados (cf. Abbott & Peterson, 1978), eles têm que representar cascâlhos de segundo ciclo nos “debris flows” Sopa-Brumadinho. Embora uma parte dos clastos sub a bem arredondados de arenito possa também representar componentes de segundo ciclo, muitos deles podem ser o produto de retrabalhamento e arredondamento ao longo dos canais alimentadores que levavam sedimentos aos sistemas de fan-delts, através de transporte em fluxos turbulentos de alta concentração. Tais processos em sistemas modernos têm sido bem documentados na literatura (p.ex., Wasson, 1977) e foram também observados pelo autor deste trabalho em canais alimentadores de leques aluviais nos Alpes Suíços e na Noruega.

A presença de clastos angulares e subangulares indica que detritos de primeiro ciclo também ocorrem. Estes clastos são compostos por litologias de baixa durabilidade (p.ex., pelitós). Como uma suite de clastos de durabilidade mista indica transportes a curta distância (cf. Abbott & Peterson, 1978), os clastos de primeiro ciclo provavelmente se misturaram com os de segundo ciclo pouco antes de sua deposição final como fluxos gravitacionais de sedimentos. A presença de calhaus e blocos de conglomerado é também uma evidência de retrabalhamento de uma área fonte portadora de conglomerados. A baixa porcentagem deste componente (Fig. 1a) sugere que os conglomerados não estavam bem litificados e uma proporção substancial deles provavelmente desintegrou-se durante o transporte nos canais alimentadores.

A textura e composição dos depósitos fan-del tíicos na área estudada foram, portanto, primariamente controlados por características herdadas de um depósito sedimentar pré-existente portador de conglomerados. Como já proposto anteriormente por Martins Neto et al. (1992), estes poderiam ser os depósitos proximais da subjacente Tectonossequência São João da Chapada (Fig. 2). O retrabalhamento das porções proximais da “braidedplain” São João da Chapada foi provavelmente o resultado da migração bacia adentro do sistema de falhas normais de borda, com a TS Sopa-Brumadinho depositando-se discordantemente entre blocos falhados de unidades mais antigas. Consequentemente, parte do estágio precedente da bacia (estágio sinirfittc 2: São João da Chapada) foi soerguido e transformado em área fonte para os sistemas de fan-delts lacustres da Tectonossequência Sopa-Brumadinho (estágio sinirfitc 3) (Fig. 2), com significativa espessura da Tectonossequência São João da Chapada sendo retrabalhada. Uma tentativa de quantificação desta erosão é extremamente difícil. Entretanto, o fato de conglomerados já litificados terem sido expostos à erosão, indica que pelo menos algumas (ou várias) centenas de metros tenham sido retrabalhados. Evolução similar pode ser observada no oeste do Golfo de Corinto (Grécia), onde depósitos com mais de 1 km de espessura estão sendo canibalizados (Gawthorpe & Colella, 1990).

Durante a fase inicial de dissecação da área fonte, depósitos da “braidedplain” São João da Chapada relativamente inconsolidados teriam sido inicialmente erodidos. Com o tempo, como uma resposta ao soerguimento da área fonte e expansão nesta direção dos canais alimentadores, depósitos cada vez mais proximais e simultaneamente cada vez mais consolida-
dos iam sendo progressivamente erodidos, de modo que depósitos contendo conglomerados semi a bem litificados tornaram-se disponíveis para erosão e retrabalhamento na área fonte. A acumulação de cascalhos nos canais alimentadores provavelmente iniciou-se neste tempo e apenas o material mais fino (areia e lama) alcançava a bacia. Este material foi então depositado como pelitos lacustres, turbiditos areníticos nos lagos e, posteriormente, como arenitos trativos (ver Martins Neto, 1995c), compondo as porções basais dos intervalos tectono-deposicionais dos fan-deltas (Martins Neto, 1995a). Conglomerados depositaram-se por fluxos de detritos quando uma quantidade suficiente de cascalho foi acumulado nas porções terminais dos canais alimentadores e o linhar de instabilidade foi atingido, provavelmente durante eventos de tempestade. Níveis profundos de erosão não foram atingidos na área, atestado pela ausência de componentes do embasamento nos conglomerados, que ocorrem em outras porções da bacia.

Com base nesta evolução propõe-se, a nível de hipótese de trabalho para discussão e posterior avaliação, que os magmas portadores primários dos diamantes da região (os quais ainda não foram encontrados) seriam relativos à fase de instalação do estágio sinrife 2 (São João da Chapada) da Bacia Espinhaço. Portanto, os diamantes teriam sido acumulados inicialmente (de forma secundária) nos depósitos proximais da “braidplain” São João da Chapada, os quais foram erodidos e/ou encobertos posteriormente pelos depósitos das fases transicional e flexural da bacia, épocas caracterizadas por uma expansão areal significativa da bacia, típica do regime de subsidência termal destas fases (Martins Neto, 1995b). A erosão, retrabalhamento e deposição relativas à fase sinrife 3 (Sopa-Brumadinho) geraram os conglomerados que atualmente comportam a mineralização de diamante.

Pflug (1965, p.34) já havia formulado hipótese similar, quando afirma que: “Aparentemente a introdução dos diamantes nesta região foi precedida por movimentos positivos da crosta e, ao mesmo tempo, migração da linha costeira para leste assim que (...) rochas diageneticamente já consolidadas chegaram ao alcance da erosão. Isto pode-se deduzir pela ocorrência de grandes blocos de quartzo e filito nos conglomerados diamantíferos”.

REFERÊNCIAS BIBLIOGRÁFICAS

FIG. 1 Distribuição total dos clastos (a) e distribuição dos clastos de arenito (b) na Tectonosequência Sopa-Brumadinho, região de Sopa/Guinda (modificado de Martins Neto, 1993). Elaborado com base em dados de Brichita, 1981.

N = número de dados.
Fig. 2) Blocos diagrama esquemáticos mostrando evolução da área fonte dos sistemas fan-deltáticos da Tectonossequência Sopa-Brumadinho (B), onde depósitos proximais da "braidplain" São João da Chapada (A) teriam fornecido sedimentos portadores de diamantes (modificado de Martins Neto et al., 1992).
FÁCIES DE FLUXOS GRAVITACIONAIS DE SEDIMENTOS NA TECTONOSSEQUÊNCIA SOPA-BRUMADINHO, BACIA ESPINHAÇO (MG)

MARCELO A. MARTINS NETO - DEGEO/EM/UFOP

Uma origem por fluxos gravitacionais de sedimentos para os conglomerados clasto suportados é sugerida pela ausência de estruturas trativas tais como estratificação ou superfícies erosivas internas, pela textura mal selecionada (polimodal), pela presença de corpos gradados, pela ausência de contatos basais erosivos e pela presença de clastos orientados verticalmente. Onde variações na textura e/ou fábrica permitiram a discriminação de unidades deposicionais, a espessura dos corpos (BBh) e o maior clasto (MPS = média do eixo maior dos dez clastos maiores, excluindo os "outsized") foram medidos. De acordo com Nemec & Steel (1984), BBh e MPS podem ser usados como uma aproximação para espessura e competência do fluxo gerador. Uma correlação positiva (em termos estatísticos) entre os dois parâmetros indica deposição por fluxos gravitacionais de sedimentos. A Fig. 1 mostra os resultados obtidos nestes conglomerados, suportando a nossa interpretação.

Segundo vários autores (ver síntese teórica, citações e referências em Martins Neto, 1993), o comportamento de fluxos gravitacionais de sedimentos durante seu estágio final pode ser inferido a partir de características dos depósitos resultantes tais como fábrica e textura. Diferentes arranjos internos dos clastos (não gradado, inversamente ou normalmente gradado, etc.) são provavelmente uma consequência de diferenças nos mecanismos de sustentação dos clastos durante os estágios finais de deposição. Normalmente os fluxos gravitacionais são caracterizados por mecanismos de sustentação múltiplos que podem agir simultaneamente ou serialmente enquanto o fluxo evolui. Entretanto, se um mecanismo domina nos estágios finais do fluxo, suas características serão impressas no depósito resultante. Para os corpos sem gradação, a ausência de mecanismos de segregação de partículas indica que os clastos foram provavelmente sustentados por interações estáticas grão-grão, provavelmente ajudado por “buoyancy” (flutuação). A gradação inversa na base de alguns corpos indica uma interação mais dinâmica entre os grãos na zona basal de cisalhamento dos fluxos geradores, com pressão dispersiva sendo o mecanismo principal de sustentação e segregação. Nos corpos inteiramente com gradação inversa este mecanismo provavelmente dominou por toda a espessura do fluxo. Gradação normal é usualmente interpretada como indicativo de fluxo turbulento durante a deposição. A raridade e, quando existente, o desenvolvimento apenas incipiente de gradação normal em conglomerados Sopa-Brumadinho indicam que turbulência desenvolveu-se apenas localmente e não plenamente. Turbulência provavelmente substituiu interação estática grão-grão como mecanismo principal de sustentação de clastos, provavelmente devido a menor concentração de clastos. Esta menor concentração poderia ser a consequência de um maior conteúdo de água na mistura. Um caráter não coesivo para os fluxos geradores das fácies clasto suportadas é sugerido pela fábrica clasto suportada, pela textura polimodal e pela natureza arenosa grossa da matriz. A ausência do fator de coesão no diagrama da Fig. 1 corrobora esta interpretação (ver Nemec & Steel, 1984 e Martins Neto, 1993 para embasamento teórico e detalhes). Portanto, os conglomerados clasto suportados não estratificados da Tectonossequência Sopa-Brumadinho provavelmente representam produtos de fluxos de detritos não coesivos (sensu Nemec & Steel, 1984).

Os conglomerados clasto suportados com estratificação incipiente possuem como característica principal a presença simultânea de feições de fluxos gravitacionais de sedimentos e de fluxos aquosos trativos, mostrando que os fluxos geradores possuíam características reológicas intermediárias entre estes tipos. Isto indica uma origem por fluxos hiperconcentrados, onde os clastos eram provavelmente sustentados por uma combinação de “buoyancy”, interações grão-grão e turbulência. Nos casos em que o último predominava, gradação normal desenvolveu-se. Onde um cisalhamento interno foi predominante e pressão dispersiva desenvolveu-se e predominou, corpos com gradação inversa foram gerados. Estas diferenças se deram provavelmente devido a variações na concentração do fluxo, provavelmente uma função do conteúdo de água na mistura.
Os conglomerados suportados por matriz arenosa depositaram-se provavelmente por fluxos gravitacionais de sedimentos, com "buoyancy" tendo sido o principal mecanismo de sustentação de clastos. A concentração maior de clastos na porção basal dos corpos indica que o "buoyancy lift" não foi forte o suficiente para evitar a descida dos clastos durante a deposição. Isto se deu provavelmente devido ao baixo contraste de densidade entre a matriz (arenosa) e os clastos (de arenito). A baixa concentração de clastos provavelmente influenciou também a magnitude de "buoyancy", conferindo ao fluxo uma baixa competência de suspensão.

As características dos conglomerados suportados por matriz pelítica indicam deposição por fluxos de detritos coesivos (sensu Nemec & Steel, 1984), onde os clastos eram sustentados principalmente pela coesão da mistura lama-água da matriz e secundariamente por "buoyancy". Uma baixa competência de suspensão, provavelmente devido a uma matriz localmente mais diluída, explicaria a gradação normal localmente observada. A bimodalidade textural destes conglomerados e a sua ocorrência associada com pelitos lacustres sugerem para estes depósitos uma origem através de inversão textural, onde fluxos de detritos cascalhosos provenientes da porção subárea dos fan-deltas misturavam-se com pelitos lacustres. Isto ocorre normalmente no “fan-delta slope”, onde os fluxos de detritos passam sobre lama inconsolidada, resultando em sobrecarga e liquificação da lama, causando então uma mistura dos dois componentes. Esta mistura resedimenta-se então em curta distância como fluxos de detritos coesivos, algumas vezes em pseudo-canais formados por este processo de mistura.

Como estruturas produzidas por processos trativos estão ausentes nos arenitos maciços, cada camada provavelmente representa um único evento deposicional, o resultado da deposição rápida de um fluxo arenoso de alta concentração. A textura maciça, grosseira e mal selecionada corrobora esta interpretação. A alta concentração dos fluxos é também sugerida pela capacidade de ter sido mantido em suspensão os seixos e calhaus esparso observados no acabouço.

A ocorrência dos arenitos gradados intercalados com pelitos lacustres indica deposição subaquática, onde cada camada seria provavelmente o produto de uma corrente de turbidez de alta densidade, representando os depósitos mais distais dos sistemas de fan-deltas. Durante eventos dinâmicos de alta magnitude, fluxos gravitacionais de sedimentos arenosos e/ou “sheetfloods” oriundos da porção subárea dos fãns se liquefizam ao atingir a massa d’água dos lagos, com os grãos sendo inicialmente sustentados por escape de fluidos intersticiais. Com sua aceleração “downslope”, estes fluxos liquefeitos com densidade modificada tornariam-se turbulentos, evoluindo então para correntes de turbidez de alta densidade. A presença de turbulência como mecanismo principal de sustentação e segregação de partículas é indicada pela gradação normal das camadas. Eventualmente, alguns destes fluxos poderiam ter viajado mais distalmente dentro dos lagos, dando origem às camadas isoladas que ocorrem ocasionaismente dentro dos pelitos lacustres. A granulometria fina destes corpos sugere um caractere mais diluído, indicando origem por correntes de turbidez de baixa densidade. Alternativamente, estes fluxos poderiam ter sido gerados por remobilização de sedimentos no “fan-delta slope” durante tempestades mais eficazes.

Portanto, foram identificados os seguintes fluxos gravitacionais de sedimentos na Tectonosssequência Sopa-Brumadinho e interpretados os seguintes mecanismos de sustentação e segregação de partículas: Fluxos de detritos não coesivos (interação estática grão-grão, pressão dispersiva, turbulência e “buoyancy”); fluxos de detritos coesivos (coesão da matriz e “buoyancy”); fluxos de alta concentração e hiper-concentrados (“buoyancy”, interação grão-grão e turbulência); correntes de turbidez de alta e baixa densidade (turbulência).

REFERÊNCIAS BIBLIOGRÁFICAS

Tabela 1: Principais feições dos fluxos gravacionais de sedimentos.

<table>
<thead>
<tr>
<th>Rocha/fábrica</th>
<th>Gradação</th>
<th>Outras feições</th>
<th>Ocorrência</th>
</tr>
</thead>
<tbody>
<tr>
<td>conglomerados clasto-suportados polimodais não estratificados</td>
<td>ausente (localmente inversa ou normal)</td>
<td>corpos tabulares a lenticulares, bases planas não erosivas, ausência de imbricação, presença de clastos verticais</td>
<td>associada a depósitos subáreos e subaquáticos</td>
</tr>
<tr>
<td>conglomerados clasto-suportados com estratificação incipiente</td>
<td>localmente gradação inversa ou normal</td>
<td>polimodais, corpos tabulares, bases não erosivas e localmente erosivas, imbricação de clastos localmente</td>
<td>associada a depósitos subáreos gravacionais ou trativos</td>
</tr>
<tr>
<td>conglomerados suportados por matriz arenosa</td>
<td>ausente</td>
<td>clastos tendem a concentrar-se na porção basal dos corpos</td>
<td>associada a corpos clasto-suportados</td>
</tr>
<tr>
<td>conglomerados suportados por matriz pelítica</td>
<td>ausente (localmente normal)</td>
<td>---</td>
<td>associada a depósitos subaquáticos (prodelta e lacustres)</td>
</tr>
<tr>
<td>arenitos maciços</td>
<td>ausente</td>
<td>corpos tabulares sem estratificação interna, clastos esparsos, bases planas não erosivas</td>
<td>associada a corpos clasto-suportados</td>
</tr>
<tr>
<td>arenitos gradados</td>
<td>normal</td>
<td>corpos tabulares isolados (finos) e amalgamados (médios a grosseiros), com grande extensão lateral</td>
<td>associada a pelitos lacustres</td>
</tr>
</tbody>
</table>

MPS (cm)

![Diagrama MPS](image)

FIG. 1 Diagrama MPS (maior clasto) versus BTh (espessura da camada) de conglomerados da Tectonossequência Sopa-Brumadinho. Explicação dos símbolos: n = número de dados; r = coeficiente de correlação; b = coeficiente de regressão (gradiente da linha); BTh = espessura média das camadas; MPS = tamanho médio do maior clasto (modificado de Martins Neto, 1993).
TECTONO-ESTRATIGRAFIA DA BÁCIA ESPINHAÇO NO ESTADO DE MINAS GERAIS

MARCELO A. MARTINS NETO - DEGEO/EM/UFOP

TECTONOSSEQUÊNCIA OLARIA:

Esta unidade, base do SG. Espinhaço na região, corresponde aproximadamente à metade inferior da Fm. Bandeirinha ou à SD Olaria de Silva (1994). Segundo este autor, a unidade tem espessura máxima de 100m, sendo limitada na base e no topo por superfícies erosivas. Aflorando na região entre Guinda e Gouveia, esta unidade é composta por conglomerados correspondentes a mantos de pedimento (Silva, 1994) recobrindo a superfície erosiva basal, seguidos por sedimentos lacustres (“transicionais”, cf. Silva, 1994).

TECTONOSSEQUÊNCIA NATUREZA:

TECTONOSSEQUÊNCIA SÃO JOÃO DA CHAPADA:

bacia. Correspondendo a cerca de 80 a 90% do volume desta TS, arenitos depositados em uma extensiva "braidplain" transversal com paleocorrentes para E (Martins Neto, 1994) completam a unidade. Esta TS aflora por toda a porção central da Serra do Espinhaço Meridional.

TECTONOSSEQUÊNCIA Sopa-Brumadinho:

TECTONOSSEQUÊNCIA GALHO DO MIGUEL:

Englobando a AF, Marinha Rasa de Martins Neto (1993) e a FM. Galho do Miguel, esta unidade possui espessuras que podem atingir 500m, aflorando por toda a extensão da Serra do Espinhaço Meridional. A separação dos depósitos de origem eólica (cf. Dossin et al., 1987) dos depósitos de origem marinha, bem como a evolução paleogeográfica desta TS ainda estão por ser feitas. A expansão areal da Bacia Espinhaço nesta etapa marca a mudança do regime de subsidência de mecânica para tectal, caracterizando esta TS como registro da fase transicional da bacia rifte para flexural, marcada por baixas taxas de subsidência (Uhlein, 1991; Martins Neto, 1995a).

TECTONOSSEQUÊNCIA CONSELHEIRO MATA:

REFERÊNCIAS BIBLIOGRÁFICAS

<table>
<thead>
<tr>
<th>Estratigrafia</th>
<th>Espessura (m)</th>
<th>Ambiente deposicional</th>
<th>Fase evolutiva da bacia</th>
<th>Regime tectônico</th>
<th>Referências</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tectonosséquência Natureza</td>
<td>~100</td>
<td>eólico, fluvial e leques aluviais</td>
<td>fase pré-rifte</td>
<td>?</td>
<td>Silva (1994)</td>
</tr>
</tbody>
</table>

Tabela 1: Tectonosséquências e síntese dos dados estratigráficos e paleogeográficos da Bacia Espinhaço (modificado de Martins Neto, 1995a)
A Formação Guiné, aflorante na região central do Estado da Bahia, faz parte do Supergrupo Espinhaço (Mesoproterozóico) no domínio da Chapada Diamantina (figura 1A). O ordenamento vertical das litologias descritas na formação por Bonfim & Pedreira (1990), Pedreira & Margalho (1990) e recentemente estudadas pelo autor a norte e leste da localidade homônima, permite o seu enquadramento no esquema conceitual de estratigrafia de sequências para uma margem continental (Einsle, 1992; figura 1B). Nas figuras 1D e 1C, que mostram as colunas estratigráficas das áreas de Mundo Novo (MN), Caeté Açu (CA) e norte de Guiné (G) ordenadas transversalmente a uma margem continental, estão representadas as seguintes subunidades dos estratos de sistemas deposicionais, definidos pelo autor acima, cujas abreviações encontram-se entre parênteses no texto a seguir:

Depósitos de nível baixo (LSB): Esses depósitos desenvolvem-se durante uma queda eustática rápida do nível do mar, até a parte inicial da sua subida; estão sobre um limite de sequência do tipo 1 (SB1), que significa uma exposição da plataforma e sua incisão por rios. Na Formação Guiné esses depósitos, com cerca de 117m de espessura, estão representados pelo leque de talude (SF) e por uma cunha de nível baixo (LSW). O primeiro é caracterizado por conglomerados suportados pela matriz depositada por correntes de turbidez de alta concentração que afloram a leste de Sincorá Velho (SV) e sudeste de Mundo Novo, sobre argilitos da cunha de nível baixo (figura 1D). A cunha de nível baixo prograda em direção à bacia; a alternância de argilitos e siltos que constitui grande parte da formação representa essa cunha. A progradação é indicada pelo espessamento das camadas que as constituem em direção ao topo. O topo da cunha de nível baixo é uma superfície de inundação marinha chamada superfície transgressiva (TS), que marca o recuo rápido da linha de costa em direção ao continental. Canais largos e rasos preenchidos por areia e arenitos em camadas com geometria sigmoidal e paleocorrentes dirigidas para leste mapeadas a sudeste de Mundo Novo e no vale do Patis a sul de Caeté Açu que marcam o topo da cunha de nível baixo, são recobertos por arenitos e siltitos argilosos com estratificação plano-paraalela, marcas onduladas e fendas de ressecamento, atingindo até 130m de espessura. Os arenitos são interpretados como preenchimento local de vales incisos. As rochas superpostas a eles são depósitos costeiros de água rasa, ocasionalmente sujeitos a exposição subárea, e portanto devem representar essa superfície.

Depósitos transgressivos (TD): Esses depósitos começam com a superfície transgressiva. Em direção ao continente estão em onlap sobre o limite inferior da sequência e em direção ao mar estão em downlap sobre a superfície transgressiva. Na Formação Guiné, os depósitos transgressivos com espessura em torno de 100m, encontram-se logo a leste da localidade homônima. Nesse local, siltitos com estratificação cruzada sigmoidal, em direção ao topo passam para siltitos com laminação plano-paraalela e argilitos formando uma sequência fining up que indica a retrogradação da linha de costa. No topo desses depósitos está a superfície de inundação máxima (MFS), que marca a transição de uma unidade sedimentar em onlap em direção ao continente, para uma cunha progradando em direção ao mar. Na Formação Guiné, essa superfície é caracterizada por siltitos com laminação cruzada com fendas de ressecamento no topo das camadas. Em direção à bacia, a superfície de inundação máxima passa a uma superfície condensada (CS) que é um nível de máxima redução da sedimentação. Na Formação Guiné, essa superfície provavelmente está representada dez quilômetros a sul de Caeté Açu, por argilitos avelhaneados.

Depósitos de nível alto (HSD): Representam a parte final da elevação do nível do mar, seu estacionamento e a parte inicial da queda. Esses depósitos afloram cerca de vinte quilômetros a norte de Guiné e consistem em siltitos com evidências da ação de tempestades. Sua espessura é de aproximadamente 80m. O topo da Formação Guiné também é um limite de sequência do tipo 1, coincidente com a base da Formação Tombador, que truncou desde os depósitos de nível alto cerca de vinte quilômetros a norte de Guiné, até a cunha de nível baixo a leste de Sincorá Velho.

Os sedimentos da Formação Guiné são inicialmente progradantes, depositados durante um abaixamento do nível do mar e passam a retrogradantes, correspondendo a uma elevação daquele nível. Na figura 1B, o posicionamento das secções indica que a deposição da formação foi próxima à borda de uma plataforma que, de acordo com as medidas de paleocorrentes disponíveis, se aprofundava para leste. A Formação Guiné representa assim uma sequência deposicional completa, situada entre dois limites de sequência do tipo 1. Dessa forma, a abordagem da Formação Guiné sob o ponto de vista da estratigrafia de sequências demonstra a superposição de ciclos de maior hierarquia aos

BIBLIOGRAFIA CITADA

Figura 1: 1A- Setor estudado da área de afloramento da Formação Guiné: 1- "Bacias" neoprotervolíticas; 2- G. Chapada Diamantina; 3- F. Guiné; 4- F. Mucugê. 1B- Seqüências estratigráficas de uma margem continental (Einsle, 1992). 1C- Coluna estratigráfica da formação no região de Guiné. 1D- Colunas estratigráficas da formação nas regiões de Caeté Açu e Mundo Novo. Lioliasias em 1C e 1D. L- argillo; S- silte; A- arenito; C- conglomerado; as flechas indicam o sentido das paleocorrentes.
ALVO BOM JAVÁ: EXEMPLO DE TRANSCORRÊNCIA LOCAL NA REGIÃO DE MORRO DO PILAR, ESPINHAÇO MERIDIONAL/MG

ULISSES CYRINO PENHA - COMIG
SÉRGIO AUGUSTO MORAIS MACHADO - COMIG

INTRODUÇÃO

Recentemente, a Comig prospectou (Aguir & Marques, 1993) a Sequência Vulcano-Sedimentar Rio Mata-Cavalo (Uhllein, 1984), no denominado Alvo Bom Javá, com 0,6 km² de área, ao norte de Morro do Pilar (MG), serra do Espinhaço Meridional. Foram executados também um detalhamento estrutural (Penha, 1994) e levantamentos geofísicos visando subsidiar o esforço prospectivo para mineralizações auríferas no referido alvo. Os dados estruturais e geofísicos então levantados constituem indícios de uma tectônica local transcorrente, em meio ao contexto maior da tectônica tangencial da serra do Espinhaço Meridional.

GEOLOGIA SUCINTA DO ALVO BOM JAVÁ

As rochas do Alvo Bom Javá pertencem à SVR-Sequência Vulcano-Sedimentar Rio Mata-Cavalo (Uhllein, op.cit.), de provável idade arqueana, limitada a leste por rochas também arqueanas do CGM-Complexo Gnáissico-Migmatítico (Guimarães, 1992), e a oeste pelos metassedimentos do Supergrupo Minas (Dorr, 1969), do Protozóico Inferior. Estes contatos são marcados por emprurrões, cujo transporte generalizado é para oeste (Aguir & Marques, op.cit.). A SVR compreende serpentinitos, aflorantes no rio Mata Cavalo; clorita xistos e clorita-quartz xistos mete-territórios; bif-formações ferro-ferro xistos mete-territórios; e intercalações de corpos lenticulares de quartzo-sericita xistos miloníticos nas rochas acima; associam-se-lhes boudins e enxames de veios de quartzo.

LEVANTAMENTOS GEOFÍSICOS MAGNETOMÉTRICOS E RADIONÔMETRICOS

A Fig. 1 mostra o mapa de contorno do campo magnético total com uma textura bastante irregular, sendo que a noroeste da área o campo magnético não possui qualquer perturbação, indicando ausência de corpos anómalos, enquanto nas partes central e oriental há uma sequência de anomalias, sendo mais evidente um corpo situado entre as linhas 200E e 500E, com direção aproximada E-W; a partir desta última linha, o referido corpo flete para NE. A partir do mapa de contorno das medidas de susceptibilidade magnética (Fig. 2) deduz-se que nos locais em que o campo magnético é mais perturbado os corpos anómalos são aflorantes e nas suas vizinhanças ocorre grande concentração de minerais magnéticos no solo. No mapa de contorno radiométrico (contagem total, Fig. 3), as informações que pode-se extrair são as mesmas obtidas do mapa de contorno da medida de susceptibilidade magnética: nos locais em que a contagem total dos elementos radioativos é elevado (superior a 130 cps), a medida de susceptibilidade magnética é muito baixa, e vice-versa. Como exemplo, vale citar as linhas 600E e 800E, que apresentam os maiores valores de susceptibilidade magnética e os menores de radiometria. Conclui-se, portanto, que há uma dupla confirmação entre as informações obtidas em ambos os métodos.

DADOS ESTRUTURAIS DO ALVO BOM JAVÁ

Regionalmente, a foliação (Ss) oscila em torno de norte-sul, com lineação de estratificação mineral (Le) associada em torno de leste-oeste, e os critérios cinemáticos (rotação de plagioclásitos e de 'tension veins', assimetria de dobrus, etc.) indicando emprurrões diregidos para oeste (Aguir & Marques, op.cit.). Entretanto, nos afloramentos e trincheiras das porções central e ocidental do Alvo Bom Javá, foram constatados emprurrões oblíquos fleitando para situações estruturais de transcorrência, com verticalização dos planos de Ss segundo direção em torno de leste-oeste; a Le associada a estes planos mantém o sentido observado regionalmente, com baixos valores de mergulho. Observam-se também dobras do tipo A com eixos sub-paralelos à Le, e estiramento de 'boudins' de quartzo segundo Le. No extremo oriental do alvo, constatou-se: (1) falha de emprurrão de direção norte-sul, afetando o nível de bif a leste da linha 550E; (2) influências das unidades liticas de leste-oeste para nor-nordeste, a leste da linha 900E, também delineado pela magnetometria; e (3) desen-volvimento de um sistema de emprurrões sob regime rúpul de direção N40-50°W, que desloca o nível de bifs gerando cataclasis em 900E/100N, pencil structures de quartzo e boudins estirados de magnetita compacta (trincheira LB/590E), além de arqueamento de Ss nos clorita xistos em 500E/450N e 650E/250N; as descontinuidades magnetométricas demarcam tal sistema rúpul. Nas trincheiras aí situadas há evidências de caivalamentos, desenvolvendo Ss cujos planos mergulham suave a moderadamente, além de dobras abertas com eixos sub-ortogonais à Le.
CONCLUSÕES

Deduz-se, pelos dados estruturais e geofísicos, que as rochas do Alvo Bom Javá estão estruturadas segundo a direção leste-oeste, fletindo para norte-sul em seu extremo oriental. Propõe-se aqui que os cavalgamentos essencialmente frontais (dirigidos de leste para oeste) que caracterizam a tectônica da serra do Espinhaço foram ligeiramente oblíquos na região de Morro do Pilar, o que conduziu, na continuidade do processo deformacional, ao desenvolvimento das transcorrências tardias e locais das porções central e ocidental do alvo estudado. Estas transcorrências tardias foram posteriormente afetadas pelos empurrões eminentemente raptos descritos em rochas da porção oriental do alvo.

AGRADECIMENTOS

Os autores externam seus agradecimentos à Direção da Comig por permitir aos autores a divulgação deste trabalho.

REFERÊNCIAS BIBLIOGRÁFICAS

UHLEIN, A. - 1984 - Estratigrafia, tectônica e potencialidade mineral da região de Morro do Pilar, MG. Rel.pesq. ao CNPq

Fig. 1 - Mapa de contorno do campo magnético total (IC = 500 nT)

Fig. 2 - Mapa de contorno da medida de susceptibilidade magnética (IC = 15.10⁶ CGS)

Fig. 3 - Mapa de contorno da radiação gamma total (IC = 10CP10S)
DADOS PRELIMINARES E POTENCIAL METALOGENÉTICO DA
SEQUÊNCIA LIMOEOIR, SERRA DO ESPINHAÇO SETENTRIONAL
MINEIRO

ULISSES CYRINO PENHA - COMIG
LINEU DE ALMEIDA SABÓIA - Geexplore Consultoria Mineral Ltda.

INTRODUÇÃO

Fig. 01 - LOCALIZAÇÃO DA ÁREA
EM VINGAIS

A faixa de disposição norte-sul, balizada a pela serra do Espinhaço e a oeste por Mato Verde e Espinosa, no extremo norte de Minas Gerais, é essencialmente constituída por rochas arqueanas (Siga Jr., 1966) do Complexo Porteirinha (Pedrosa-Soares et al., 1993). A leste desta faixa, o Supergrupo Espinhaço (Pflug, 1968), do Proterozóico Médio, inclui quartzitos, metaconglomerados e metavulcânicos ácidos a intermediários. A região integra a Faixa de Dobramentos Araçuaí, na zona limítrofe com o crânio do São Francisco. Os autores efetuaram trabalhos em escala de reconhecimento envolvendo geologia, estrutural e geoquímica de superfície nesta área, entre Monte Verde e Monte Azul (Fig. 1). Embora preliminares, os dados resultantes permitem distinguir do Complexo Porteirinha uma associação rochosas de caráter metavulcânico, aqui denominada Sequência Limoeiro, estratigráficamente posicionada entre o complexo citado e o Supergrupo Espinhaço.

PERFIS GEOLOGICOS E GEOQUIMICA DE
SUPERFICIE

Os perfis geológicos efetuados têm disposição geral leste-este, são transversais à faixa de interesse contida entre Mato Verde-Monte Azul e a escarpa ocidental da serra do Espinhaço: Mato Verde-Fazenda

As rochas granitoídes são em geral mesocráticas, isotrópicas a pouco foliadas. Indícios de alteração hidrotermal incipiente incluem epidotização e sericitização de piagioclássios. Os gnásses estão via de regra migmatizados, com estruturas bandada e dobrada, e seu bandamento composicional é deformacional (no sentido de Myers, 1978), uma vez que coincide com os planos de foliação regional, de caráter milonítico, cujos planos oscilam entre N10°E e N10°W, com mergulhos entre 50° e 80°, associando-se aos mesmos uma linhação mineral ou de estiramento (Le) "down dip". São comuns estreitos corpos tabulares de pegmatitos e apilitos, concordantes com o bandamento composicional, bem como corpos máficos, ora tabulares, ora amenedoados, de textura isotrópica em meio a faixas foliadas. Esporadicamente, a deformação dúctil superimposta gerou quartzo-muscovita xistos miloníticos com foliação anastomosada (Sth), e quartzo em veios e "boudins" originados por fraturamento hidráulico. Quando aos protólitos se associam faixas de rochas máficas e ultramáficas, os milonitos resultantes contêm ainda tremolita-actinolita, clorita, urmâlina e, por vezes, talco e sulfitos. Os indicadores cinemáticos implicam uma movimentação geral de massas de leste para oeste, manifesta em planos de emparração empinados.

A amostragem geoquímica foi efetuada em caráter regional, não sistemática, tendo as amostras de sedimentos ativos de corrente sido analisadas para Pb/Zn/Ag/Au pelo laboratório da Geosol, com objetivo específico para determinado modelo de jazimento mineral.

SEQUÊNCIA LIMOEOIR

Ao longo do perfil Monte Azul-Limoioir aflora uma seqüência, aqui designada Sequência Limoeiro, constituída por quartzo-clorita xistos, clorita-quartzo-turmalina-píritas xistos, quartzo-muscovita xistos, raros quartzitos feldspáticas e, localmente, corpos
lenticulares de barita contidos em xistos miloníticos. Estas rochas apresentam evidências de pronunciado cisalhamento localizado em condições dúctil-rúptile, por vezes acompanhado de turmalinização, sulfetação, potassificação e silicificação. A altitude dos planos de Sn oscila de N5°E a N45°E, com mergulhos moderados a altos, preferencialmente para sudeste.

Três afloramentos ao longo deste perfil merecem destaque: (1) Pacote estreito em que alternam-se níveis de metachert ferruginoso, ora maciço, ora foliado, e de quartzo-sericita-leucoxênio xisto milonítico, este classificado como metavulcânicas ácida (petrografa Ludmila Pereira, con. verbal); sua meteorização gerou "gossan"; (2) Conjunto cisalhado de clorita-quartzo xisto em contato com muscovita-quartzo xisto, este com lentes de barita (de até 3m x 0,8m) contendo "box works", oriundos da meteorização de sulfetos ou carbonatos; (3) Clorita-quartzo-turmalina-pirita xisto fino associado a muscovita-quartzo xisto, ambos constituindo tectonitos LS na conceituação de Davis (1984).

Esta sequência é interpretada pelos autores como metavulcânicas de natureza máfica (clorita xistos), com termos intermediários (tufos) a ácidos (metavulcânicas pouco deformadas), com contribuição sedimentar química (metachertes ferruginosos). A participação sedimentar detrítica é restrita a faixas estreitas de quartzitos feldspálicos e filitos.

POSICIONAMENTO ESTRATIGRÁFICO E AMBIÊNCIA GEOTECTÔNICA

As rochas da sequência em estudo estruturam-se segundo faixas heterogeneamente deformadas, em que a relação angular entre Sn e a Le aí contida configura um sistema de empurrões cuja cinemática indica movimentação para leste-nordeste. Os planos destes empurrões orientam-se desde N10°W a N10°E, com mergulhos moderados a fortes para nordeste e sudeste. As dobras de porte mesoscópico, em geral intrafoliais e de diferentes estilos, são produtos locais de deformação concentrada, não devendo ser correlacionadas ao longo de toda a sequência. O contato da Sequência Limoeiro com as rochas do Complexo Porteirinha é encoberto por sedimentos colúvio-eluviôneus. A leste, esta sequência é cavalga pelas rochas do Supergrupo Espinhaço segundo uma superfície de descolamento basal de baixo ângulo. Portanto, sua idade geológica deve oscilar entre o Arqueano e o Protozoóico Inferior.

Quanto à ambigência, possivelmente represente porções basais preservadas (metavulcânicas) de uma bacia intracrânica alojada nos terrenos TGG (Tonalito-trondjemito-graníticos) do Complexo Porteirinha. Sua porção superior, com maior participação sedimentar, teria em tese sido grandemente erodida. Seqüência similar, de posicionamento estratigráfico semelhante (encaixada em terrenos TGG e cavalga por rochas do Supergrupo Espinhaço), porém desprovida de clorita xistos e metamorfozada na facies anfibólitico baixo, foi descrita a leste da serra do Espinhaço Setentrional por Penha & Fonseca (1994) como Seqüência Cantinho.

POENCIAL METALOGENÊTICO

Para a Sequência Limoeiro, o modelo de mineralizações auríferas relacionadas ao cisalhamento dos empurrões do Supergrupo Espinhaço é improvável, uma vez que ambas as unidades foram metamorfozadas nas facies xisto verde. Assim, a justaposição tectônica em questão não causaria inversão geotermal com desidratação e mobilização de fluidos mineralizantes. Restam os modelos sedimentar-exalativo (Sedex) e vulcanogênico. Para o primeiro caso, ainda que existam de nível(s) rompido(s) de barita e representantes de termos vulcânicos ácidos a intermediários, a "bacia Limoeiro" é muito restrita, comportando uma espessura de sedimentos insuficiente para viabilizar a percolação efetiva de fluidos ao longo de estruturas (Large, 1981). Segundo Sangster (1990), o modelo Sedex requer pelo menos 3 km de sedimentos para propiciar a ascensão de fluidos na bacia, solubilizando metais e precipitando-os em contato com a água do mar. O modelo vulcanogênico merece investigação adicional, sendo os dados disponíveis ainda prematuros.

REFERÊNCIAS BIBLIOGRÁFICAS

EXPLORAÇÃO MINERAL NO NORTE DE MINAS GERAIS: O EXEMPLO DO PROJETO SERRANÓPOLIS

ULISSES CYRINO PENHA - COMIG
SÉRGIO DE LIMA DELGADO - COMIG

INTRODUÇÃO

O Projeto Ouro-Serranópolis teve origem nos trabalhos de prospecção regional efetuados pela Metamig (Christophe da Silva, 1989) no norte de Minas Gerais, ao que seguiram-se pesquisas da Comig (Penha et al., 1992) em uma área de 150 km², situada a leste de Porteirinha, onde buscaram-se indícios de mineralizações de ouro e de metais-base. Apresentam-se aqui os dados geoquímicos desta área, além de idéias sobre seu potencial metalogenético.

GEOLOGIA E ESTRUTURAÇÃO DA ÁREA

São gnaisseis maciços a foliados, bandados ou não, frequentemente migmatizados, além de xistos máficos e ultramáficos interpretados por Pereira & Lacerda (1993) como restos de uma sequência original máfica-ultramáfica diferenciada. Quando cисalhadas, as rochas dispõem-se segundo faixas descontínuas com espessura de até centenas de metros e extensões até quilométricas, contendo em maiores proporções paragêneses minerais da facies xisto verde. O Supergrupo Espinhaço (Proterozoico Médio) sustenta a serra a leste de Serranópolis, e compreende sericita quartzoititas, metaconglomerados e máficas, todas metamorfoseadas na facies xisto verde. O aspecto estrutural mais evidente na área são zonas de cisalhamento com extensões de dezenas a milhares de metros e espessuras até decamétricas, em que os planos de foliação milonítica (Sn) têm direcção entre N70°E e N25°W, mergulhando para oeste segundo ângulos baixos a moderados no Espinhaço e altos a moderados no Complexo Porteirinha (Penha et al., 1992). Segundo estes autores, os planos de cavalgamento que estruturaram as rochas do Complexo Porteirinha foram progressivamente rotacionados de modo a assumir as atitudes emfinadas da porção cristal hojeh exposta, ainda que em tese se suavizem em profundidade (geometria de escalas lenticularizadas). Apenas na faixa de contato entre ambas as unidades citadas, que corresponde a uma superfície de descolamento, os valores de mergulho são similares. Estas zonas representam frentes de cavalgamento de uma tectônica regional com cinemaética dirigida para oeste e que afeta toda a serra do Espinhaço. Os planos de Sn contêm uma linhação de estratificação mineral e/ou de estratificação disposta entre 860°E a 710°E.

LEVANTAMENTO GEOQUÍMICO

De início, foi efetuado um estudo orientativo em área onde tanto a diversidade litológica quanto a estruturação foram consideradas representativas da complexidade da área do projeto, tendo sido amostradas 83 estações com amostras de sedimento ativo (sedimentos de corrente-SC e concentrados de bateria-CA) em área de 20 km². Os SC foram divididos em 3 frações (+80#, -80# +150#, -150#), e selecionaram os pontos que forneceram mais de 100g por fração para análise química multi-elementar. Desta forma, 34 amostras de SC e CB foram analisadas pela Geosol para Fe, Mn, Co, Ni, Cu, Zn, Ag, Cd, Pb (A.A.-HNO3); B, Ti, Cr, Y, Nb, Mo, Sn, Ba (E.O.E.); S, U, P, Bi, Sr, W (R.X.); Te, As, Sb, Se (geração hidretos-A.A.); Hg (geração vapor-A.A.); Pt, Pd, Rh, Ir (pré-conc.-E.O.E.); F (for especifico) e Au (hidromórfico). Os resultados desta fase mostram que a dispersão física predomina sobre a química, como reflexo do regime torrencial e intermitente das chuvas no norte de Minas Gerais. A fração -150# é a que oferece os melhores contrastes, com exceção para Y, Ba e F (igual nas 3 frações) e W (com maior contraste na fração +80#). Estiveram sempre abaixo do limite inferior de detecção: U, Bi, W, Te, B, Nb, Mo, Rh, Ir, Se, Hg e Pt; enquanto Sn, As, Sb, S, Ag e Pd mostraram alguns valores próximos e acima dos respectivos limites de sensibilidade analítica. Nos CB ressalta-se a associação Ti/YP com valores acima do limite superior de detecção. Testes realizados por análise de fatores (Modo-R) na fração mais fina indicam que 4 fatores respondem por 73% da variabilidade total, sendo o fator 1 (35%) representado por Cu/Pb/Zn; o fator 2 (16%), por Y/P/Ti; o fator 3 (12%), por Ni/Cr; e o fator 4 (10%), por Ba/F.

Foi realizada posteriormente prospecção de semi-detalhe por sedimentos de drenagem em uma área de 85 km², com coleta de SC e CB segundo uma
densidade média de 2 mm/Km². Foi direcionada por litologia (Delgado, 1993), sendo amostradas as 'unidades' informais: granodioritos (GRD), gnaisse bandados (GNB), máfico-ultramárficos (MUM) e tonalito-gabreíticas (TGB). As amostras de SC e CB foram preparadas no laboratório da Comig e enviadas para análise química (Geosol). Dos elementos dosados na fase orientativa, continuou-se dosando 16, baseando-se no controle obtido na fração -150 # e na importância prospectiva do elemento, mantidos os respectivos métodos analíticos. Os dados obtidos foram tratados pelo sistema GEOQUANT 3.0 (CPRM), considerando os dados por unidade litológica ou constituindo população única (Sumário dos estimadores - Tabela anexa). Em todos os tratamentos, observou-se uma semelhança entre as unidades litológicas a nível de 'background' geoquímico, refletindo o padrão estrutural ameaçado e alternado das unidades rochosas em todas as escalas. As bacias estatisticamente anômalas para SC são pequenas e normalmente descontínuas, configuram do possíveis anomalias litológicas. Os resultados analíticos dos CB ressaltam a possível presença de galena e cromita na região. Esta última foi identificada em seção poída ocupando núcleos de magnetita (Pereira & Lacerda, 1993).

POTENCIAL MINERAL: CONDICIONANTES TECTÔNICOS E GEOQUÍMICOS

Os dados geológicos, estruturais e geoquímicos da região de Serranópolis indicam baixa potencialidade para mineralizações metálicas. O sistema de cavaleamento da área justapõe sequências de facies xisto verde (Supergrupo Espinhaço), sobre outras de facies anfibolito (Complexo Porteirinha), além de lenticularizar internamente as rochas deste complexo. Portanto, prospectar ouro segundo o modelo de cisalhamento com alteração hidrotermal retromamórfica nesta região é desaconselhável, posto que a tectônica de empuressões não propiciou inversão geotermal, como ocorre na jazida de urânio de Lagoa Real, Bahia (Lobato, 1985). As mineralizações metálicas de Ti/Cr/V relacionadas ao complexo máfico-ultramárfico diferenciado (Pereira & Lacerda, op.cit.) embutido nos gnaisse apresentam um comportamento espacial (amêndoa descontínuas lateralmente, com planos XY do elipsóide de deformação praticamente verticalizados) restritivo à delimitação de jazimentos expressivos.

REFERÊNCIAS BIBLIOGRÁFICAS

SUMÁRIO DOS ESTIMADORES DE SEDIMENTO DE CORRENTE

Geoquímica de Semi-detalhe - Fração <150
Distribuição Suposta Lognormal

<table>
<thead>
<tr>
<th></th>
<th>Cu ppm</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
<th>Co ppm</th>
<th>Ni ppm</th>
<th>Cr ppm</th>
<th>V ppm</th>
<th>Ba ppm</th>
<th>P ppm</th>
<th>S ppm</th>
<th>F ppm</th>
<th>Au ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ú</td>
<td>V.min</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>28</td>
<td>168</td>
<td>97</td>
<td>50</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>V.max</td>
<td>98</td>
<td>57</td>
<td>140</td>
<td>75</td>
<td>231</td>
<td>630</td>
<td>350</td>
<td>220</td>
<td>880</td>
<td>620</td>
<td>672</td>
</tr>
<tr>
<td>N</td>
<td>Média</td>
<td>29</td>
<td>30</td>
<td>60</td>
<td>17</td>
<td>40</td>
<td>120</td>
<td>113</td>
<td>713</td>
<td>367</td>
<td>201</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Des.</td>
<td>7</td>
<td>1,7</td>
<td>3,9</td>
<td>1,6</td>
<td>1,7</td>
<td>1,8</td>
<td>1,8</td>
<td>1,4</td>
<td>1,4</td>
<td>1,8</td>
<td>0,5</td>
</tr>
<tr>
<td>C</td>
<td>C.V.</td>
<td>0,6</td>
<td>0,2</td>
<td>0,5</td>
<td>0,5</td>
<td>0,6</td>
<td>0,8</td>
<td>0,4</td>
<td>0,3</td>
<td>0,4</td>
<td>0,6</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>G.d.</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>100</td>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>

G	V.min	8	17	10	4	7	20	34	168	100	53	130	1
	V.max	96	57	140	75	231	630	350	153	880	470	672	169
N	Média	33	31	70	19	41	120	135	679	379	187	266	8
	Des.	1,6	1,7	1,9	1,4	1,6	1,6	1,8	1,4	1,5	1,7	1,4	1,7
B	C.V.	0,5	0,2	0,4	0,5	0,5	0,6	0,3	0,4	0,4	0,6	0,3	1,7
	G.d.	100	100	100	100	100	100	100	92	100	92	100	36

G	V.min	2	9	7	2	5	29	28	380	100	50	132	
	V.max	52	50	101	31	88	460	160	155	860	480	638	
R	Média	19	31	44	10	25	93	78	756	305	207	310	
	Des.	2	9	1	19	8	12	5	4	14	4	1,7	1,4
D	C.V.	0,8	0,4	0,6	0,7	0,7	0,6	0,4	0,3	0,5	0,5	0,4	
	G.d.	100	100	100	100	100	100	100	100	100	86	100	

M	V.min	17	19	43	9	26	56	73	700	190	53	109	
	V.max	42	42	80	33	99	400	190	980	570	310	600	
U	Média	26	30	64	17	56	215	119	821	347	174	233	
	Des.	1	4,3	1	1,2	1,5	0	1,6	0	1,3	1,1	1,4	1,7
M	C.V.	0,3	0,2	0,1	0,4	0,5	0,6	0,3	0,1	0,3	0,5	0,4	
	G.d.	100	100	100	100	100	100	100	100	100	83	100	

T	V.min	14	22	15	10	19	68	65	530	110	51	152	
	V.max	77	46	90	52	188	590	160	119	730	510	500	
G	Média	31	29	57	20	57	147	98	737	431	269	324	
	Des.	1	1,4	1,2	1,4	1,5	0	1,6	0	1,2	1,5	1,6	1,2
B	C.V.	0,3	0,1	0,3	0,4	0,5	0,4	0,3	0,5	0,4	0,5	0,2	
	G.d.	100	100	100	100	100	100	100	100	100	97	100	

*Obs: * Número de dados Insuficiente
Terra Vermelha: Exemplo de Transcorrência em Zona de Inflexão da Serra do Espinhaço Setentrional/MG

Ulisses Cyrino Penha - COMIG
Maria Beatriz Rodrigues Fonseca - COMIG

Introdução

A região da Terra Vermelha está inserida na serra do Espinhaço Setentrional (MG), próxima à divisa com a Bahia. Trabalhos regionais foram desenvolvidos pela Metanimag (Christophe da Silva, 1989) desde Rio Pardo de Minas até Espinosa, prosseguindo com trabalhos semi-regionais da Comig (Penha & Fonseca, 1994a), com apoio de PID-processamento digital de imagens de satélite TM Landsat-5 (Franca et al., 1994), e de semi-detalhe e detalhe (Penha & Fonseca, 1994b). O clima próximo ao semi-árido e a vegetação do tipo cerrado na região favoreceram a utilização de PID como ferramenta auxiliar. Utilizou-se o software ER MAPPER, 3.2c, em estações de trabalho SUN IPX e IPC, gerando como produtos (1) o realce de estruturas regionais e (2) a discriminação de minerais do grupo das argilas e de óxidos de ferro (técnicas Crôsta, Laughlin, 1991), em tese relacionáveis a alterações hidrotérmicas de interesse metalogênico. Durante os trabalhos de verificação de campo foram levantados dados estruturais que permitem elaborar a proposta de evolução tectônica ora apresentada.

Geologia Regional

A região em estudo situa-se na borda leste do cratô do São Francisco, no âmbito da Faixa de Dobramentos Araçuaí, mais especificamente na janela estrutural designada Bloco Itacambira-Monte Azul (Guimarães et al., 1993), cuja evolução tectônica foi estudada por Crocco-Rodrigues et al. (1993). Os autores do presente trabalho reconheceram a três unidades litotárgicas descritas na literatura (Complexo Porteirinha, Supergroup Espinhaço e Grupo Macaubás), além de definiu uma nova unidade, a Sequência Cantinho (Penha & Fonseca, 1994b). O Complexo Porteirinha (Pedrosa-Scares et al., 1993) compreende rochas granito-granálias, e representa o embasamento sílico das supercrustais do Proterozóico Médio (Supergroup Espinhaço) e Superior (Grupo Macaubás), ao passo que a Sequência Cantinho, de posicionamento estratigráfico indefinido, constitui-se de metavulcanicas ácidas a intermediárias ciselhadas com alterações hidrotermal. A tectônica convergente que afetou as unidades referidas foi dirigida para oeste, gerando empurrões frontais a obliques em escala regional com rampas laterais associadas, além de dobramentos e estruturas amenanadas locais. A deformação ductil-ruptil associada a esta tectônica originou feições locais interessantes do ponto de vista metalogênico como inversão geotérmica, ciselhamento e alocotono de rochas, metamorfismo retrôgrado e alterações hidrotermais.

Inserção da Área na Serra do Espinhaço

A serra do Espinhaço é uma entidade fisiográfica que se estende por 1200 km, segundo norte-sul, ao longo dos estados de Minas Gerais e da Bahia. A área da Terra Vermelha situa-se em uma zona de inflexão desta serra, notória nas escalas 1:250.000 (radar) e 1:100.000 (satélite). Neste setor da serra, a maioria das estruturas planares (foliação, xistosidade e bandamento) têm atitudes em torno de N60°E, mergulhando para sudeste.

Geologia e Estructuração da Terra Vermelha

O Supergroup Espinhaço está representado na área por pacotes de quartizitos puros e impuros (micáceos e felspáticas), localmente ferruginosos, seguidos por corpos máficos de diabásios e gabros e, em menor expressão, por metavulcanicas ácidas. Tal sequência foi deformada ductil-ruptilmente gerando xistos miloníticos e veios de quartzo com feldspato potássico raramente associado. A deformação mencionada estruturou as unidades líticas segundo corpos lenticulares, desfazendo as relações de contato originais mediante imbricação de litologias e transposição parcial de superfícies planares, além de empurrões, dobramentos e transcorrências, estes últimas de expressão localizada. O retrometamorfismo associado aos processos deformacionais gerou silicificação, sericitização e cloritização, observáveis em campo e ao microscópio. A meteorização superimposta às lentes de quartizitos ferruginosos e as rochas máficas, que frequentemente afloram imbricadas entre si, produziram crostas lateríticas silício-ferruginosas detectadas pelo TM Landsat-5 e discriminadas pelas técnicas de PID (Franca et al., op.cit.).

Proposta de Evolução Tectônica

As relações angulares existentes entre as atitudes dos planos de foliação milonítica (Su) e da linhação de estiramento mineral (Le) neles contida, observadas em superfícies de empurrão e em dobras de escala...
mesoscópica, são ora típicas de cavalgamento oblíquo, ora de transcorrência localizada. Os valores de Sn concentram-se entre N40ºE e N80ºE, com mergulhos predominantes para sudeste, e os de Le entre S70ºE e leste-oeste. Os indicadores cinemáticos (rotação de "tension veins", flexuras de foliação, assimetria de dobras e superfícies S-C) indicam movimentação tectônica convergente de ESE para WNW. Propõe-se aqui que tais esforços convergentes, gerando superfícies de emprurrão, tenham formado o antiforme da Terra Vermelha. Uma vez que os emprurrões foram oblíquos, a progressão da deformação culminou no desenvolvimento tardio de esforços transcorrentes, de rejeito dextral, com campos transpressivos e transtensivos. Os emprurrões, o antiforme e as transcorrências de caráter localizado estão hoje confinadas ao interior de uma estrutura amenoada de porte considerável (eixo maior segundo N60ºE com 10km). A figura 1 ilustra a sequência evolutiva proposta.

BIBLIOGRAFIA

AGRADECIMENTOS

Os autores agradecem à Diretoria da Conig pela permissão em divulgar o presente trabalho, esperando contribuir com o conhecimento geológico do norte do Estado. São igualmente gratos ao collega Jarbas Sampaio (’Alenão”), Sávio Figueiredo e Alisson Sol pela produção das figuras.
DEPÓSITOS GEMÍFEROS DO ESPINHAÇO EM MINAS GERAIS

SÉRGIO H. RIBEIRO - MHN/IGC/UFMG
JOACHIM KARFUNKEL - MHN/IGC/UFMG
MARIO L.S.C. CHAVES - MHN/IGC/UFMG
ANDRE BANKO - Mineralogisches Inst. der Univ. Wien.

Entende-se pela designação “Espinhaço” a unidade morfológica, compreendendo a sequência meso-proterozoica homônica, bem como as rochas mais antigas e mais novas que com ela compõem a Cordilheira. Geologicamente engloba as seguintes variedades:

1) DIAMANTE

Eles podem ser considerados de boa qualidade, com média de Vₙ-Si/I-J e a produção estimada é superior a 100.000ct/ano (Karfunkel et al., 1995).

a. Depósitos pré-cambrianos

Diamantes desta idade ocorrem associados às formações Sopa-Brumadinho e Grão Mogol (Chaves & Karfunkels, 1995b), do Supergrupo Espinhaço. As rochas, depositadas em leques aluviais e rios braided, constituem o retrabalhamento de estratos sedimentares mais antigas, nos Conglomerado Sopa tópico ocorrem clastos de conglomerados e brechas, além de não serem conhecidos minerais satélites do diamante nos concentrados de pesados.

Os principais depósitos na região de Diamantina pertencem aos campos diamantíferos de São João da Chapada, Guinda-Sopa, Data e Extração (teores médios de 0.01-0.10ct/m³). A maior pedra de boa qualidade extraída em 1995 (Jan.-Abr.) pesou 25ct (octaedro), oriunda de Extração; resultaram após o beneficiamento duas pedras de 4 e 2ct, com a classificação IF/I. Os depósitos de Grão Mogol são considerados ligeiramente mais novos, com produção anual não ultrapassando 5.000ct. A maior pedra extraída nos últimos 10 anos pesou 5.03ct (dodecaedro), que no estado bruto teve a classificação cleanish/1.

b. Depósitos fanerózicos

PLIO/PLEISTOCENO: A feição morfológica atual do Espinhaço deve-se provavelmente a um novo soerguimento, ocorrido durante o Plioceno. Em consequência de um relevo mais acentuado formaram-se depósitos de talus (“embrurrados”), localmente diamantíferos, como na Serra do Cabral. A última fase de retrabalhamento, fora da atual, é representada pelos “gorgulhos” - depósitos coluviais pleistocênicos, distribuídos amplamente na Serra do Espinhaço, em certos locais diamantíferos com média de 0.01-0.03ct/m³.

ALUVIÕES RECENTES: São economicamente os mais importantes. Seu teor baixo (0.008-0.1ct/m³) é compensado pelo imenso volume de cascalho, superior a 400 milhões de m³, com relação gema/indústria acima de 90/10.

2) QUARTZO

O Brasil é o maior produtor mundial de quartzo e de suas variedades gemológicas desde o início do século, entretanto o auge da produção marca as duas grandes guerras. Na Segunda Guerra, foi exportada uma quantidade superior a 10 milhões de toneladas e ainda hoje a exploração é intensa, utilizando-se métodos artesianais. Seu valor gemológico na forma lapidada, ornamental e ainda para fins exóticos cresceu significativamente na última década.

O quartzo nas formas de cristais isolados, de aglomerados (pinhas), ou ainda para ornamentação, são as mais procuradas. Quartzo com inclusões (como clorita e phantoms), natural ou beneficiado, representa um grupo especial que merece destaque; sua demanda na qualidade superior, especialmente no Japão, EUA e RFA é superior a oferta, o que marca o fator principal de preços elevados. As áreas de maior produção são as serras do Cabral, Mineira, Itacambira e Grão Mogol, as duas primeiras as mais importantes. As jazidas primárias são do tipo filões e stockworks encaixadas nos quartzoitos Espinhaço e ainda nos metápetites Bambuí entre as serras do Cabral e Mineira. Os depósitos eluviais e coluviais encontram-se em geral nas proximidades dos primárias, fornecendo cristais com arestas abaludadas; eles são beneficiados para objetos ornamentais.

O quartzo enfumacado (morion) ocorre principalmente na Serra Mineira ao S e SW de Diamantina. Seu uso é exclusivamente na forma lapidada ou ornamental. O citrino é raro no Espinhaço

3) OUTRAS VARIEDADES GEMOLÓGICAS

Euclássio

Foi descrito no Espinhão apenas ultimamente (Chaves & Karfunkel, 1995a): i) próximo de Olhos d'Água, município de Bocaiúva; na década de 80 foram explorados 10 kg de material gemológico (amarelho) e peças de coleção, na porção caulinzada de um veio pegmatóide com quartzo e hematita, cortando quartzitos. ii) a NNW de Itacambira foram explorados na mesma época euclássios azulados em veios cortando a Fm. Resplandecente. Em ambas as localidades o material secundário foi também objeto de exploração. iii) durante exploração a N de Gouveia, foram descobertos euclássios incoloros e rosados, de até 1 cm, relacionados a veios pegmatóides, cortando micaxistas pré-Esphinhaço.

Gahnita

Confundida inicialmente com alexandrita, a gahnita foi descoberta na década de 80 ao sul de Pelício dos Santos (Cassane & Chaves, 1989). Sua cor verde, que na luz artificial muda para vermelho, foi a razão do engano. As gemas, a maioria translúcidas ou opaças, ocorrem em afluentes do Rio Araquá.

Bário-ortoclássio

Turquesa e wavelita

Relacionam-se a rochas pelíticas da Fm. Rio Parde Grande, ao N de Conselheiro Mata, ocorrendo nas formas de crostas superficiais, ou associadas às rochas hospedeiras (Correia Neves et al., 1976). Seu valor geomológico é reduzido devido à falta de consistência e qualidade do material.

Lazulita

É conhecida na região ao sul de Diamantina, disseminada nos xistos da Fm. Barão de Guaicuí, ou na forma de veios com blocos de até 30 kg. Ainda foi observada nas serras de Itacambira e Grão Mogol nos quartzitos Espinhão.

REFERÊNCIAS BIBLIOGRÁFICAS

ANÁLISE E INTERPRETAÇÃO DE IMAGENS TM/LANDSAT NO ESTUDO DE ESTRUTURAS RÚPTEIS E RÚPTEIS-DÚCTEIS EM PARTES DO QUADRILÁTERO FERRÍFERO E ESPINHAÇO MERIDIONAL, MINAS GERAIS, BRASIL

MARILIA VIDIGAL SANT’ANNA - INPE
ATHOS RIBEIRO DOS SANTOS - INPE

INTRODUÇÃO

A área em estudo abrange parte de duas regiões do estado de Minas Gerais, o Quadrilátero Ferrífero e Serra do Espinhaço Meridional, definida pelas coordenadas geográficas 19°20’00” e 20°15’00” de latitude sul e 43°20’00” e 43°45’00” de longitude oeste. Esta área, de grande importância em recursos minerais e de alta complexidade geológica, inclui rochas arqueanas policíclicas do Complexo gnássico-migmatítico, restos de sequências tipo “greenstone belts” arqueanas (supergrupos Rio das Velhas e Paraúna) e depósitos sedimentares e localmente vulcânicos, com graus de metamorfização variáveis e metamórfico baixo, constituindo coberturas plataformais prorozóicas (supergrupos Minas, Espinhaço e São Francisco, Inda et al. 1980).

Este trabalho procura contribuir para o conhecimento evolutivo desta importante região, através de estudos tectono-estruturais e de integração de dados regionais, a partir de imagens TM-LANDSAT. O enfoque principal é dado à tectônica de fraturamento, cuja metodologia utilizada analisa dados de sensoriamento remoto (lineamentos estruturais) e de campo (fraturas) quanto a sua distribuição espacial (análises estatísticas) e as suas relações genéticas e cinemáticas.

METODOLOGIA

Os estudos desenvolvidos basearam-se, fundamenta- nalmente, na aplicação de técnicas de fotointerpretação sistemática (Guy, 1966; Riverau, 1972; Soares e Fiori, 1976) em imagens TM-LANDSAT na escala 1:100.000. Estas técnicas, que se fundamentam na análise das propriedades dos elementos de textura (drenagem e relevo) e da estrutura fotográfica, permitiram a confecção de uma base geológica, além de mapas de lineamentos estruturais (feições lineares e alinhamentos de drenagem e de relevo), traços de zonas de juntas (feições lineares de relevo e drenagem não paralelas a foliação) e morfoestrutural (análise e interpretação de padrões assimétricos dentro da distribuição geral dos elementos de relevo e drenagem).

Os dados de campo objetivaram, basicamente, o estudo de fraturas (faltas e juntas) através do estabelecimento, em afloramento, de sua frequência por atitude (número de ocorrência/unidade de área), indicadores cinemáticos (tipo de movimentação, presença de veios, díques, etc.) e das relações de cruzamento (idade relativa). As principais foliações também foram caracterizadas no campo. Estes dados de campo foram analisados estatisticamente de diferentes formas, sempre levando em consideração os aspectos da geologia e da estratigrafia formal da região.

Por outro lado, os dados de fraturamento extraídos da imagem foram tratados estatisticamente, segundo o método desenvolvido a partir de Aliyev (1980). Este procedimento analisa, em primeiro enfoque, a distribuição espacial dos diversos sistemas de fraturamento separadamente e, posteriormente, de forma integrada. Este método permite a caracterização das principais zonas de fraqueza crustais, bem como indicações sobre suas relações genéticas.

RESULTADOS

Os resultados, ainda preliminares, permitem que se faça algumas considerações sobre o estudo:
- a metodologia utilizada, através do desenvolvimento de mapas temáticos, informações de campo e tratamento estatístico de dados, mostrou-se coerente, pois os dados complementam-se e dão maior confiabilidade à interpretação;
- as interpretações obtidas dos produtos de sensoriamento remoto mostraram-se totalmente compatíveis com os dados de campo e bibliográficos;
- observou-se que há, nas diversas formas analisadas, um “padrão” de fraturamento específico, de acordo com cada um dos ambientes geológicos da área;
- observou-se uma forte relação entre as feições dúcteis e rúpteis dos quartzitos das Serras do Espinhaço Meridional e dos Quartzitos das Serras de Cambotas, no Quadrilátero Ferrífero, indicando uma possível correlação estratigráfica entre unidades dos Supergrupos Minas e Espinhaço.

REFERÊNCIAS BIBLIOGRÁFICAS

THE LOWER ESPINHAÇO SUPERGROUP IN THE AREA BETWEEN DIAMANTINA AND GOUVEIA, MINAS GERAIS, BRAZIL: AN EXAMPLE OF INTRACRATONIC RIFT BASIN

ROGÉRIO RODRIGUES DA SILVA - CPMTC-IGC/UFMG

The Espinhaço Supergroup represents a metasedimentary cover deposited in an aborted rift basin that started its evolution during Paleoproterozoic. This abstract aims to present a stratigraphic and paleogeographic framework of the rift phase of the Espinhaço Supergroup in the area between Diamantina and Gouveia, Minas Gerais. Five depositional sequences are recognized (concept after Mitchum et al., 1977): Basal, Olaria, Natureza, São João da Chapada and Sopa-Brumadinho/Galho do Miguel Depositional Sequences (Fig. 1).

The structural framework of the Espinhaço rift basin is characterized by a development of a large half-graben basin (Silva, 1995)(Fig. 1a). Tectonic movements occurred mainly along the master listric fault, probably, located elsewhere at east of the studied area and dipping towards the west. The sea level was located elsewhere at southeast of the studied area. The alluvial sediments are indicative of deposition on a ramp hanging wall of the master listric fault. The evolution of the rift phase of the Espinhaço Supergroup is characterized by periods of intense tectonic activity intercalated with periods of tectonic stability. The development of the unconformities and the deposition of alluvial sediments seems to be controlled by extensional tectonism. During tectonic stability, deposition seems to be controlled by transgressions of the sea level.

The evolution of the rift phase of the Espinhaço Supergroup can be summarized as following (Figs. 1b, 1c): 1. Basal Depositional Sequence. The existence of intracratonic derived arkosic sandstones allow us to interpret this sequence as being deposited during the earlier stage of the basin evolution. 2. Olaria Depositional Sequence. The development of the unconformity U1 and the deposition of alluvial fans and pediment mantles occurred during extensional tectonism. An onlap contact with the overlying sandstones is clearly indicative of a transgression of the sea level (from SE to NW). 3. Natureza Depositional Sequence. Alluvial fans and a conglomeratic braided fluvial system are deposited during extensional tectonism, covering the unconformity U2. The alluvial fan system transported sediments towards the northeast, over a conglomeratic braided fluvial system, with consistent paleocurrent pattern towards the southeast. The basal coarse alluvial deposits are followed by a fine grained sandy-braided fluvial system, which was also deposited during tectonic instability. This alluvium is followed by very fine colian sediments, maybe representative of barchan (3-D) and transverse (2-D) dunes. At the top of one studied section, a transgressive sequence can be demonstrated. This transgression occurred from SE to NW, on a coast line oriented NW-SE. 4. São João da Chapada Depositional Sequence. At the beginning of the deposition of this sequence, the sedimentary basin experienced extensional tectonism, with development of a normal fault system, an angular unconformity U3, and the deposition of proximal debris-flows, mainly derived from the underlying tilted deposits of the Natureza Depositional Sequence, but also from the granitic basement as well. After tectonism, the sedimentary basin was flooded by basic volcanites (greenschists and hematitic phyllites). A transgression of the sea level can be interpreted from the onlapping basal contact of the overlying sandstone sequence. Probably, as a response of base-level change, this transgression promoted the aggradlation of a sandy braided fluvial system, with paleocurrents towards the east, over the transitional sediments. 5. Sopa-Brumadinho/Galho do Miguel Depositional Sequence. Tectonism caused the development of an unconformity outside of the studied area and of a correlative conformity in the studied area. A transgression of the sea level, after tectonism, caused the deposition of onshore pelitic rocks covering the correlative conformity. During a highstand sea level occurred the progradation of a deltaic system with detritic diamonds. Renewed transgression promoted the deposition of shallow-marine sediments, covering the deltaic deposits (Martins-Neto, 1993). The deposition of an extensive colian system (Galho do Miguel Formation) is indicative of tectonic stability in a post-rift phase of the Espinhaço sedimentary basin evolution (Uhlein, 1991).

The beginning of the Espinhaço basin evolution may have started during Paleoproterozoic, between 2.0 and 1.7 Ga. The oldest age, 2.0 Ga, is referred to the Transamazonian Orogeny, which affected the Archean basement complex. The youngest age, 1.7 Ga, is referred to geochronologic data obtained from zircons found within metamorphic rocks in the basal portions of the São João da Chapada Depositional Sequence (Dussin, 1994).

BIBLIOGRAPHY

Fig. 1. The Espinhaço Supergroup in the area between Diamantina and Gouveia, Minas Gerais, Brazil. (A) Framework of the Espinhaço half-graben basin. Inset shows location of Figure 1B. (B) Stratigraphic scheme of the Espinhaço sedimentary basin in the studied area. (C) Stratigraphic and sedimentologic section.
A CORDILHEIRA DO ESPINHAÇO EM MINAS GERAIS: UM LEVANTAMENTO BIBLIOGRÁFICO

ELIANE MARINALVA DE SOUZA - IGC/UFMG - Bibliotecária
MÁRCIA O. Z. MARTINS - Biblioteconomia/UFMG, CPMTC/UFMG (bolsista).

INTRODUÇÃO

O presente trabalho tem por principal objetivo informar aos estudantes, profissionais e pesquisadores da área os trabalhos divulgados sobre Geologia do Espinhaço em Minas Gerais, a partir de 1970, quando foi criado o Centro de Geologia Eschwege - CGE, em Diamantina, MG.

Foram reunidos trabalhos e resumos expandidos publicados nos Congressos Brasileiros de Geologia, nos Simpósios de Geologia de Minas Gerais, no Simpósio sobre os Sistemas Depositionais no Pré-Cambriano, realizado em Ouro Preto (março 1987), na Revista Brasileira de Geociências. Foram ainda relacionadas teses de doutoramento e dissertações de mestrado de universidades brasileiras e do exterior.

ANÁLISE DO LEVANTAMENTO BIBLIOGRÁFICO

Constam do levantamento bibliográfico um total de 274 referências, assim distribuídas:
- Congresso Brasileiro de Geologia - 103 referências, que correspondem a 37,6% da totalidade do levantamento bibliográfico;
- Simpósio de Geologia de Minas Gerais - 64 referências que equivalem a 23,4% das referências deste trabalho;
- Simpósio sobre Sistemas Depositionais no Pré-Cambriano - 4 referências que representam 1,5% desse levantamento bibliográfico;
- Revista Brasileira de Geociências - 30 referências que são 11% desse trabalho;
- Teses e Dissertações - 73 referências que, em relação às 274 referências, equivalem a 26,6%.

Ilustramos em anexo, através de gráficos, o número de referências encontradas cronológicamente em cada publicação.

Ressaltamos o Simpósio de Geologia de Minas Gerais onde representamos também os 20 trabalhos selecionados e publicados nestes Anais.

ARRANJO DO LEVANTAMENTO BIBLIOGRÁFICO

O levantamento bibliográfico apresenta-se na seguinte ordem:
- Congresso Brasileiro de Geologia;
- Simpósio de Geologia de Minas Gerais;
- Simpósio sobre Sistemas Depositionais no Pré-Cambriano;
- Revista Brasileira de Geociências;
- Teses e Dissertações.

As Teses e Dissertações estão dispostas em três grupos:
1. - Teses orientadas pelo Prof. Reinhart Pflug
2. - Teses de Doutoramento no Brasil e Exterior
3. - Dissertações de Mestrado no Brasil

Nesses diversos grupos as referências foram organizadas em ordem cronológica e dentro desta, em ordem alfabética de sobrenome do autor.

O levantamento bibliográfico será publicado na GEONOMOS. v. 3, n. 1.

CONCLUSÃO

Observou-se que muitos trabalhos foram publicados, mas acredita-se que muitos outros ainda permanecem inéditos e com este levantamento desejamos estimular os estudantes a publicarem seus trabalhos contribuindo ainda mais para a disseminação da informação sobre Geologia do Espinhaço em Minas Gerais.

Espera-se, também, que este levantamento bibliográfico venha auxiliar a pesquisadores e profissionais em Geologia a elaborarem novos trabalhos científicos em Geologia do Espinhaço mineiro.

AGRADECIMENTOS

Agradecemos ao Prof. Friedrich Ewald Renger pelo incentivo, ajuda, carinho e amizade; ao Prof. Eduardo Antônio Ladeira pelo excelente "puxão de orelhas" e ao Prof. Alhaou Saadi pelo estímulo inicial. Agradecemos também, ao Adalberto Hempfling pela disponibilidade para digitar este trabalho.
Congresso Brasileiro de Geologia

Simpósios de Geologia de MG

Revista Brasileira de Geociências

Teses e Dissertações
DATAÇÃO DE MONAZITAS DO DISTRITO PEGMATÍTICO DE SANTA MARIA DE ITABIRA, MG

ESSAİD BİLAL - Ecole des Mines de Saint-Etienne
VITÓRIA RÉGIA P.R.O.MARCIANO - IGC/CPMTC/UFMG
KAZUO FUZIKAWA - CDTN
JOSÉ MARQUES CORREIA NEVES - IGC/UFMG
ANDRÉ GIRET - Université Jean Monnet, Saint Etienne

INTRODUÇÃO

As monazitas (MON) que são objeto deste trabalho foram coletadas em corpos pegmatíticos do Distrito de Santa Maria de Itabira (DPSMI), pertencentes à Província Pegmatítica Oriental do Brasil (Paiva, 1946). Desenvolveu-se neste trabalho metodologia analítica com utilização de microsonda, para obtenção de dados geocronológicos, aplicando a técnica descrita por Montel et al. 1994. Discute-se, igualmente, o efeito dos fenômenos hidrotermais tardi a pós-magmáticos sobre as datações.

CONTEXTO GEOLOGICO

O DPSMI está situado a nordeste de Belo Horizonte, destacando-se nele os municípios de Itabira, Santa Maria de Itabira, Ferros, Sabinópolis e Guanhães. Esta região apresenta um embasamento de idade arqueana (2,6 Ga), formado essencialmente pelo Grupo Guanhães (GG) que compreende ortognaisses calcoalcalinos e paragaissais. A abertura do rift intracontinental do Espinhaço ocorrida no Protozóico Médio, foi acompanhada pelas intrusões no GG, do granito anorogênico subalcalino denominado Borachudos (GB) (1,72 Ga) e de riolitos (1,7 Ga). Este conjunto de rochas arqueanas e do Protozóico Médio foram afetadas por uma tectônica tangencial que corresponde ao fechamento do Rift do Espinhaço (1,3 a 1,1 Ga). Em 512 Ma no início do Paleozóico, logo após a Orogenia Brasiliense (700-600 Ma), foi desenvolvida uma anatexia crustal Pedrosa Soares et al. (1992). Este episódio está muito representado a leste, no Campo Pegmatítico da Gaiólie, pelos granitódides calcocalcalinos de Gaiólie (540-450 Ma) e pelos pegmatitos associados.

Os pegmatitos do DPSMI estão encaixados em ortognaisses ou paragaisses do GG, ou nos GB. Estes granitoides apresentam uma zonacion química regional aparentemente centrada em torno de uma zona de anatexia situada entre as localidades de Vila Esperançã e Santa Terezinha e a cidade de Dores de Guanhães. Na pedreira de Vila Esperança, os filões graníticos não foliados de fraça pujança (1m em média) associados aos pegmatitos constituem, por assim dizer, uma raiz anatética. Os pegmatitos têm idade de 502 a 529 Ma (Marciano et al. 1993) comparável à de 512 Ma apresentada pelos migmatitos desta região (Machado et al. 1989). Estes corpos são zonados, tabulares ou lenticulares, com comprimentos entre 50 a 100 m e espessura de 0,5 a 2 m, ricos em berilos e minerais industriais. Há diferenças na composição mineralógica destes pegmatitos segundo estejam encaixados em paragaissais ou ortognaisses do GG, como por exemplo as lavras do Morro Escreu e Euxenita, ou nos GB (Lavra da Generosa). Os primeiros contêm níbio-tantalatos com elevados teores em urânio e elementos terras-raras, devido ao baixo conteúdo em fósforo. Os segundos são mais enriquecidos em fósforo, ocorrendo cristais de fluórita de 0,5 a 1 m, e cristais decaméricos de MON. Estas, correspondem a uma proporção muito baixa (1/10) nos pegmatitos onde elas constituem uma fase mineral mais precoce. Este fosfato foi coletado em diferentes corpos pegmatíticos, mas não se pode precisar sua posição exata em relação à estrutura desta rocha. Apresentam-se fraturadas, nas bordas dos cristais, e estas microfraturas são preenchidas por huttonita e silicatos de ferro (Bilal et al. 1993). A partir dos cristais de huttonita há o desenvolvimento de uma rede radial de microfraturas na MON. Na Lavra de Euxenita, a huttonita está associada à xenotima.

CONDIÇÕES DE CRISTALIZAÇÃO DOS PEGMATITOS

As inclusões fluidas de quartzo dos pegmatitos que estão estratificados na zona de anatexia, Gnaisses da Vila Esperança, são bifásicas (IFB)ou monofásicas(IFM). As IFM de CO₂ são da ordem de 10 µm e a temperatu-
ra de homogeneização(Th) do CO₂ está entre 12 e 20°C para uma temperatura de fusão (Tf) de -57°C. As IFB, maiores do que 50 µm apresentam Th do CO₂ da ordem de 31°C e Tf de -57°C. As Tf do gelo estão compreendidas entre -4°C e 0,3°C. A espectroscopia Raman indica sonente a presença de CO₂ e ainda confirma a Tf do CO₂. As inclusões fluidas de esmeraldas da Lavra Capoeirana em Nova Era, afastada da zona anatética, mostram que os fluidos se tornaram mais carbonatados, pois o CO₂ representa 70% do volume delas (Souza et al. 1992). Estas inclusões são frequentemente polifásicas (água, CO₂ e
fase sólida), são mais safinas (11,5 a 19% em equivalente de peso de NaCl). A Tf do CO₂ está compreendida entre -56,7 a -56,9°C e a Th varia entre 26 e 30°C. A densidade de CO₂ é da ordem de 0,616 g/cm³. O estudo termométrico tem mostrado que a pressão está compreendida entre 2 e 2,75 kb e que a temperatura variou de 450 a 650°C.

As temperaturas e as pressões são comparáveis àquelas dos pegmatitos a elementos raros de New Mexico, USA (London & Burt, 1986), de Rosendal na Finlândia e do centro-este e sudeste da África (Baldwin & Knorring, 1983).

GEOQUÍMICA DAS MONAZITAS

As amostras de MON foram analisadas em microsonda Camebax da Escola de Minas de Paris (Montainebleau) com uma tensão de 20 KV. Para as datações das MON foi utilizado o método de Montel et al. 1994. Somente o Th, U e Pb foram analisados. As idades foram calculadas pela fórmula:

$$\text{Pb} = (\text{Th} + 323,2 \times 10^{-6}) \times (0,9928 \times 10^{-6})^{1,238 \times 10^{-6}} \times 2,06 + (U + 238,04) \times 0,0072 \times 1,2351 \times 10^{-6}$$

As MON dos pegmatitos encaixados nos ortognaisses e paragneisses do GG são mais ricas em Y, Th, U e também em cheralita em solução sólida do que as MON dos pegmatitos posicionados nos GB. As encaixantes dos pegmatitos desta área aparecem como determinantes na evolução destes corpos (Bilal et al. 1993). As zonas alteradas destas MON são pobres em Th, U e Pb porém ricas em elementos terras raras leves. As razões U/Pb e Sm/Nd diminuem muito durante o processo de alteração.

Utilizando-se o método de Montel et al. (1994) as MON não alteradas mostram uma idade de 531±22 Ma (8 valores), e as zonas alteradas das MON têm uma idade de 325±34 Ma (7 valores). Entretanto as MON da lavra Euxenita mostram uma idade mais jovem de 462±33 Ma. As huttonitas apresentam uma idade de 20±11 Ma.

DISCUSSÃO E CONCLUSÃO

A precipitação do flúor ou a demisturação do CO₂ (F⁻ e CO₃²⁻ complexante do Na dos fluidos) pode ocasionar uma sobresaturação em Na no fluido e produzir albítização em um estágio tardí-magmático. Estes fluidos ricos em complexantes tais como F⁻, CO₃²⁻ e PO₄³⁻ alteram as MON (ETR, Pb, U e Th) e provocam a lixiviação destes elementos e sua deposição ulterior com formação de huttonita, xenotima e uraninita. A temperatura da albítização tardia é inferior a 450°C, o que é compatível com as condições de deposição do urânio. A presença de uranila é devida à diversidade de fôntes. Esta albítização tardia dos pegmatitos é similar à albítização tardia na mineralização uranotorférica e niobiófera dos granitos alcalinos da Nigéria (Bowden, 1985) ou da intrusão de Ilmaussaq (Hansen, 1968).

A idade de 531±22 Ma obtida nas MON não alteradas é comparável àquela de 529 e 502 Ma obtida por Marciano et al. (1993), em moscovitites destes mesmos pegmatitos e por Machado et al. (1989) sobre as bordas de titântitas dos migmatitos desta região (512 Ma). O Th e U são mais passíveis de lixiviação e as razões U/Pb e Sm/Nd variam consideravelmente nas zonas alteradas o que fornece uma idade mais jovem (325±34 Ma). As huttonitas são minerais secundários. Os fenômenos hidrotermais afetam a idade das MON.

REFERÊNCIAS BIBLIOGRÁFICAS

Hansen, J., 1968. A study od radioactive veins containing Rare-Earth mineral in the area surrounding the Ilmaussaq alkaline intrusion in South Greenland, Medd. Groenland Bd, 181, 8, 47.

A TAFROGÊNESE ESTATERIANA NO CONTINENTE SUL-AMERICANO

BENJAMIM BLEY DE BRITO NEVES - IG/USP

As colagens orogênicas promovidas pelos ciclos orogênicos da parte intermediária (períodos Riaciano e Orosiriano) do Paleoproterozóico foram muito importantes para a consolidação e origem dos núcleos crustânicos mais antigos do nosso continente, com a coalescência dos vários blocos arqueanos preexistentes. Estes processos de fusão continental (ou supercontinental) têm sido designados de Transamazoniano (orogênia, ciclo, etc.), o que é uma forma simplista, tendo em vista a diversidade de eventos orogênicos, em distintas situações geolóxico-paleogeográficas e de tempo.

As massas continentais então recém-aglutinadas foram submetidas a importantes e extensivos processos (hoje conhecidos da Amazônia ao Uruguay) de tafrogênese, com marcante sincronismo (início 1,8-1,75Ga) dentro do Período Estateriano, até o final do Paleoproterozóico (1,8-1,6Ga)

A designação deste período é referência e ênfase ao processo global, a nível mundial, de ampla cratonização (Statheros = estável) que sucedeu no tempo um climax mundial de orogênicas (o período Orosiriano), consoante a Subcomissão de Estratigrafia do IUGS.

No caso deste continente, a ampla consolidação e aglutinação de landmasses tem farta comprovação geológica e fica ratificada com a implantação subsequente e quase simultânea dos processos tafrogenéticos e seus registros. E, assim, passa a somar como argumento favorável à existência de um supercontinente (e seu imediato quebramento) ao final do Paleoproterozóico. É preciso reiterar que esta análise de conjunto é feita tendo por base a posição atual dos blocos paleoproterozoicos, o que é limitação considerável.

Em praticamente todas as frações litosféricas aflorantes provenientes da desarticulação de Rodinia (supercontinente do final do Mesoproterozóico, que é o referencial possível), grandes (como Amazônia, São Luís-África Ocidental, São Francisco-Congo, Rio de La Plata, etc.), intermediários (e.g. Maciço Central de Goiás) e pequenos (os “maciços” e parte do embasamento das províncias brasileiras), os eventos do processo tafrogenético consignou registros litoestruturais, de maior ou menor vulto. Muitos dos rifts precursores desta tecônica marcadamente extensional evoluíram para amplas bacias cratogênicas (IF ⇒ IS, e IF ⇒ MS), com desenvolvimento de assembleias BVAR (inicialmente, curto tempo) e QPC, isto em paralelo a enxame de diques, granitos anorogênicos, e outras manifestações ígneas intracrutônicas (de acordo com as terminologias de Kingston et al, 1983 para bacias sedimentares, e de Condie, 1989 para associações litológicas).

Os registros magmático-sedimentares foram em conformidade com o grau de extensão (fator β) inicial a que foram submetidos os blocos paleoproterozoicos, e de desenvolvimentos subsequentes aos processos de rifeamento (subdissídio termo-mecânica). Nominalmente, deve-se apontar: Enxames de diques sobretudo (Rio De La Plata, Uruguay Centro-Ocidental, Arauí-SE); diques máficos e sedimentação clástica predominante (S.João D'El Rey-MG); binômio granito-riolito (Guiñahües, Espinhaço Setentrional); vulcanismo bimodal e granitos anorogênicos (Orós e Jaguaribe-CE, São Roque/Serra Itaberaba-SP); idem, idem, mas com o desenvolvimento subsequente de extensas bacias sedimentares sobrepostas e justapostas (Espinhaço-Chapada Diamantina, BA e MG, Irirí-PA, Araú/Se. da Mesu/Natividade/Monte do Carmo, GO e TO).

No contexto do maciço de Goiás, deve-se incluir a alocação na crosta dos grandes corps mafico-ultramáficos acamados (por suas características petroclínicas e geoquímicas) e pelo menos duas famílias distintas de granitos anorogênicos. No domínio Espinhaço-Chapada Diamantina, o processo evoluiu bastante após a fase inicial de longos rifts (na ordem de 1300km longitudinal) estaterianos para bacias muito amplas, com sequências sedimentares continentais a marinhas, combinando subdissídio termo-mecânica com variações eustática do nível do mar no tempo, esta evolução, se estendeu ao Mesoproterozóico (≥ 1300Ma).

O acervo de dados geocronológicos é ainda modesto (vários métodos), mas está se caracterizando por sua coerência, indicando o cerne dos eventos rupturais e magmáticos entre 1,8 e 1,6Ga., consoante dados U-Pb de várias frentes de pesquisa (em laboratórios do Brasil, Canadá, Alemanha, França, entre outros). O caso do Espinhaço é por enquanto, a única exceção documentada de evolução adentrando tempos mesoproterozoicos.

O processo tafrogenético tem várias causas possíveis. Pela características gerais descritas, sua ubiquidade em blocos paleoproterozoicos e pela analogia com o que ocorreu em outros continentes, a tendência é indiciá-lo como decorrência natural da excessiva coalescência de massas crustais. Estas expressões supercontinentais tendem a tamponar a astenosfera (na falta de zonas de acressão e subdução), que reage com ascensão significativa de materiais mantêlicos aquecidos que vão se alocar.
próximo à base da crosta ("underplating"). A repercussão na crosta tem várias possibilidades (domos, riftes, magmatismo, bacias...), na proporção direta da intensidade dos colchões magmáticos sotopostos e na proporção inversa da velocidade da placa.

PRINCIPAIS REFERÊNCIAS

AFINIDADES GEOQUÍMICAS ENTRE GNAISSES ARQUEANOS DOS COMPLEXOS METAMÓRFICOS BONFIM E BELO HORIZONTE

MAURÍCIO ANTÔNIO CARNEIRO - DEGEO/EM/UFOP
CARLOS MAURÍCIO NOCE - CPMTIC/IGC/UFMG
EURIPÉDES MARIANO DA CUNHA - UFOP/Bolsista PIBIC
RINALDO AFRÂNIO FERNANDES - UFOP/Bolsista PIBIC

De longa data (e.g. Herz 1970), tem sido discutida a presença de uma crosta sílfica arqueana nos domínios dos terrenos granito-grenstone do Quadrilátero Ferrífero (Figura 1). Petrograficamente, as rochas mais antigas desta crosta continental são caracterizadas como gnaisses cíntenos, bandados, de composição trondjemítica, a grânítica mais subordinada, que são designados, de forma diversa, por toponímias locais como: Gnaisses Alberto Flores (Carneiro 1992), Gnaisses Belo Horizonte (Noce 1995), Gnaisses Belo Vale (Lacerda 1994), etc. Intrusivos nestes gnaisses, encontram-se variados corpos de granitoides e mafítos, provenientes de diferentes etapas de ação mantelica ou retrabalhamento crustal (Carneiro 1992; Noce 1995).

Um vasto acervo de dados geológicos desta crosta, englobando descrições petrográficas, análises isotópicas e químicas, encontra-se disponível na literatura da região (e.g. Herz 1970; Schorsch 1992; Carneiro 1992; Lacerda 1994; Noce 1995). Todavia, a correlação destes dados, no que toca aos resultados geoquímicos em particular, tem sido uma tarefa árdua, porque as análises nem sempre estão acompanhadas de uma caracterização segura da natureza petrográfica da rocha (e.g. gnaisses, granitos, migmatitos ?). A despeito disto, alguns trabalhos mais recentes (e.g. Carneiro 1992; Noce 1995), que trataram em conjunto os resultados petrográficos, geoquímicos e radiométricos, considerando o posicionamento sequencial dos corpos, frente aos grandes eventos tectonomasmagmáticos regionais, é possível traçar algumas correlações entre rochas gnaissicas pertinentes aos Complexos Metamórficos Bonfim e Belo Horizonte. Além de sua semelhança petrográfica, filiação cílico alcalina e caráter paraluminoso a metamunso (Carneiro 1992; Noce 1995), estas rochas tem padrões geoquímicos de variação de elementos incompatíveis e de terras raras muito semelhantes (Figuras 2-A e 2-B; Tabela 1). Estas características gerais também estão reproduzidas nos Gnaisses Belo Vale do Complexo Metamórfico Bonfim (Lacerda 1994). A evolução petrogenética dos Gnaisses Alberto Flores e Belo Horizonte, a julgar pelos resultados radiométricos U-Pb (Machado & Carneiro 1992; Machado & Noce 1993; Carneiro et al. 1993; Noce 1995), remonta ao Arqueano Superior quando estas rochas enfrentaram, pelo menos, três episódios de retrabalhamento crustal. O mais antigo situado a volta de 2,92 Ga, refere-se à idade dos núcleos dos zircos dos Gnaisses Alberto Flores; um evento de migmatização, a 2,86 Ga., teve lugar nos Gnaisses Belo Horizonte e, finalmente, um episódio de sobrecrescimento de zircos ocorreu, por volta de 2,78 Ga, nos Gnaisses Alberto Flores. No entanto, de acor- do com Machado & Carneiro (1992), o protólito destes gnaisses pode remontar ao Arqueano Médio (3,3 Ga).

BIBLIOGRAFIA

NOCE, C. M. - 1995 - Geocronologia dos eventos magmáticos, sedimentares e metamórficos na região do Quadrilátero Ferrífero, Minas Gerais, São Paulo, 128p. (Tese de Doutorado, Instituto de Geociências, USP).

Figura 1 - Contexto geológico do Quadrilátero Ferrífero no Cratôn do São Francisco Meridional. Símbologia:
1 - Contatos geológicos; 2 - Empurrões; 3 - Limite cratônico oriental; 4 - Supergруpo São Francisco; 5 - Supergруpo Espinhoço; 6 - Complexo Metamórfico com idades brasileiras; 7 - Supergруpo Minas; 8 - Supergруpo Rio das Velhas; 9 - Complexo Metamórfico com idades arqueanas. Cidades: BHZ - Belo Horizonte; DVS - Divinópolis.

Figura 2 - Média normalizada dos elementos incompatíveis (A) e da terras raras (B) dos Gneisses Alberto Flores (círculos), Belo Horizonte (quadrados) e Bodo Vael (losango).
ELEMENTOS CAUSADORES DE CORES NAS TURMALINAS DA MINA DO CRUZEIRO, SÃO JOSÉ DA SAFIRA (MG)

JÚLIO CÉSAR MENDES - DEGEFO/UFOP
DARCY PEDRO SVISERO - IG/USP

Nenhuma outra gema possui uma gama de cores tão ampla como a turmalina. Tal fato, fez com que vários autores relacionassem as cores com os tipos de moléculas desse mineral. Hoje sabe-se que essa correlação não é verdadeira, pois as nove moléculas de turmalinas podem ser encontradas nas mais diversas cores (Dietrich 1985).

O Pegmatito do Cruzeiro é composto por três corpos, onde a turmalina é um mineral extremamente comum. Em termos compostos, nessa mineração é encontrada apenas a série schorlita-elbaíta. Entre as variedades gemológicas da turmalina, encontram-se rubelitas, verdelitas, indicolitos, turmalinas olho-de-gato e melanitas (César-Mendes et al. 1994).

Em turmalinas de colorações diversas foram realizadas análises químicas (microsonda eletônica e absorção atômica) na tentativa de determinar os elementos responsáveis pela cor. A cor verde das turmalinas costuma ser atribuída, principalmente, à presença de Cr e/ou V, e Fe²⁺ quando esses íons estão presentes em quantidades superiores ao Fe³⁺. Sabe-se que o Mn³⁺ em pequenas quantidades é um cromóforo responsável pela cor vermelha, enquanto o Mn²⁺ necessita estar presente em grande quantidade para ser corante. Outros elementos ou associações de elementos também são citados como causadores dessa cor, entre eles o Fe³⁺, o grupo Mn+Cs+Li, o Mn²⁺ e/ou Mn³⁺ + um pequeno percentual de Fe e/ou Mn³⁺+Fe²⁺ (Dietrich 1985). Nas análises químicas obtidas em cristais mostrando zonamento de cores verde e vermelho, o Cr e o V não foi detectado. A parte verde do cristal mostra teores muito altos de FeO e de ZnO (Figura 01). Na porção vermelha das amostras analisadas, o teor de Li₂O é cerca de 1,0% em peso maior do que na verde, enquanto o manganês (Figura 01) diminui quando passa-se da cor verde para a vermelha. O teor de Cr medido e o de V determinado qualitativamente nas turmalinas verdes é praticamente desprezível, já o teor de FeO é bastante alto, situando-se sempre acima de 1,0% e podendo atingir 7,5% em peso. Outro óxido extremamente alto nas turmalinas verdes é o de ZnO (Figura 01), situando-se acima de 1,0% em peso em alguns espécimes analisados. Já nas turmalinas vermelhas dessa mineração, o teor de Li₂O analisado, sempre está acima de 2,0% em peso; o teor de FeO é muito baixo e a % em peso de MnO é mais baixa do que nos cristais verdes, mas mostrando-se em uma quantidade apreciável. O Pegmatito do Cruzeiro é um sistema muito pobre em césio e análises qualitativas obtidas através do sistema dispersivo de energia (EDS) não detectaram este elemento na estrutura das turmalinas. Vê-se que o teor de MnO sempre é maior nas porções verdes do que nas vermelhas (Figura 01). Pode-se afirmar que nas turmalinas de coloração verde e vermelha, os elementos causadores de cor são diferentes dos encontrados na literatura geológica (Leckebusch 1978; Prescott & Nassau 1978 e Dietrich 1985). Portanto, pode-se afirmar que nas turmalinas do Cruzeiro, a cor verde é devida aos teores altos de FeO, MnO e ZnO e a umas percentagens baixas de Li₂O. A cor vermelha por outro lado, está relacionada aos teores de MnO e Li₂O mais alto que nos cristais verdes. O que fica claro é que, a medida que aumenta a intensidade da cor verde, os teores de FeO e, possivelmente, os de ZnO também aumentam. Já, nas turmalinas vermelhas, quanto mais forte ou mais intenso é o matiz vermelho, maior o teor de MnO e de Li₂O. Portanto, a única explicação para a cor vermelha é a associação Mn+Li relativamente maior do que na porção verde.

Quanto a turmalina azul e verde, vê-se claramente que o teor de Fe é praticamente o mesmo, nas duas partes de cores diferentes do cristal (Figura 02). Os teores de Zn mostram um aumento abrupto, enquanto os de Mn e Ca crescem sensivelmente na parte verde do cristal.

REFERÊNCIAS BIBLIOGRÁFICAS

Figura 1 - Variação composicional em uma turmalina mostrando zonamento de cores, proveniente de um pocket da Mina do Cruzeiro. Os resultados são representados em cátons por fórmula unitária e cada ponto representa a média de quatro análises químicas dessa região do mineral.

Figura 2 - Variação composicional em uma turmalina mostrando zonamento de cores (azul e verde), proveniente de um pocket do Pegmatito do Cruzeiro. Os resultados são representados em cátons por fórmula unitária e cada ponto representa a média de quatro análises de uma região do mineral.
DIQUES MÁFICOS PROTEROZÓICOS DO COMPLEXO GRANITO-GNÁSSICO-MIGMATÍTICO DA PORÇÃO MERIDIONAL DO CRÂTON DO SÃO FRANCISCO, MG

ALEXANDRE DE OLIVEIRA CHAVES - IGC/UFMG (Pós-Graduação)
JOSÉ MARQUES CORREIA NEVES - IGC/UFMG

No Complexo Granito-gnássico-migmatítico (CGGM) da porção meridional do Cráton do São Francisco (fig.1) ocorrem, além de anfibolitos migmatizados (mais antigos que 2,86Ga, ver NOCE et al., 1994), duas gerações de diques básicos proterozoicos. Dentre estas duas gerações, a primeira introduziu nas porções transacionais de zonas de cismalhamento transcorrente(ZCT), em condições de crosta intermediária. Estas ZCT’s, de direções N10-30W (predominante) e N50-70E (subordinada), foram geradas no final do ciclo Transamazônico, em função de uma compressão de direção aproximada SSE para NNW, já assinalada em trabalhos anteriores (ex. ALKIMI et al., 1994). Os diques desta geração, com cerca de 2,0 Ga (K-Ar em anfibólios de TEIXEIRA et al., 1988) e direções paralelas às ZCT’s predominantes, se mostram metamorfizados e com margens cislhadas em função de movimentos horizontais destas ZCT’s, tendo sido geocômica e identificados como toleitos continentais (CHAVES et al., 1995), com características de basaltos de arco vulcânico. A segunda geração de diques, com textura ígnea preservada, é também geocômicamente constituída por basaltos toleíticos continentais, com enriquecimento em ETR leves superior ao dos diques da primeira geração. Estes diques mais novos, de direções N50-70W, cortam os mais antigos e posicionaram-se na crosta, em regime extensional (diferente daquele da primeira geração), antes da deposição do Grupo Bambuí. O modelo de seu posicionamento cristal, de acordo com o esquema a seguir (fig.2), foi o seguinte: há cerca de 0,9 Ga (início do Ciclo Brasiliense) ter-se-ia desenvolvido um centro de distensão, associado com intrusão de diques e riftamento. No início deste riftamento (muito provavelmente ligado à ascensão de uma pluma mantélica), os diques apresentavam padrões radiais (fig.2a) a partir de uma fonte pontual (provavelmente situada sob o rift Espinhaço meridional - hipótese que continua a pesquisar-se e que procura apoiar-se em trabalhos de campo e dados de anisotropia da susceptibilidade magnética dos diques). A partir daí, ter-se-ia iniciado o espalhamento ("drift", fig.2b), com os diques se agrupando em duas categorias, aquelas alinhadas paralelamente às margens continentais em desenvolvimento (de direções aproximadamente N-S, seguindo a linha de fraquezas pré-existente do Rift Espinhaço) e aquelas do braço abortado (notar que o tendestes últimos não segue as ZCT’s pré-existentes, ou seja, o magma que originou estes diques criou suas próprias fraturas, - N50-70W - modelo do fraturamento magmático de NAKAMURA (1969, em MOTOKI & VARGAS, 1994), situados dentro da península São Francisco em formação, aproximadamente perpendiculares aos primeiros. PEDROSA SOARES et al.(1992) dataram rochas da região de Ribeirão da Folha, possivelmente indicativas da crosta oceânica (bacia Araquá) então formada, tendo obtido uma idade isocrona Sm-Nd de 816±72Ma. FOCK et al. (1994) encontraram uma idade de 790Ma para rochas de uma melange ofiolítica (possivelmente crosta oceânica deformada) dentro da Faixa Brasília, indicativas da bacia oceânica (bacia Brasília) que ter-se-ia aberto seguindo a direção N-S aproveitando a linha de fraqueza do rift Arauí, sincronicamente à bacia Araquá, dando a conformação à península São Francisco. No final do Ciclo Brasiliense, deu-se o fechamento da bacia Araquí (a bacia Brasília também se fechou a este), e os diques formados paralelamente às margens deformaram-se durante a colisão continental (fig. 2c). Estes diques deformados encontram-se atualmente com direções N-S dentro da Serra do Espinhaço Meridional (cortam também o S.G.Minas no leste do Quadrilátero Ferrífero e o Complexo Guanáb; DOSSIN et al., 1993 e SILVA et al., 1992), tendo a sua datação pelo método U-Pb (MACHADO et al., 1989) dado a idade de 906±4,2 Ma. Os diques do braço abortado (850-900Ma, segundo nossa reinterpretação dos dados K-Ar em plagioclásios de TEIXEIRA et al., 1988) encontram-se hoje preservados e indeformados com direções N50-70W (fig.2c) dentro do Crito do São Francisco, cujos limites se estabeleceram após o Ciclo Brasiliense. Estes diques de braço abortado (como também os de direção N-S do Espinhaço) seriam, portanto, o registro da fragmentação local do supercontinente Rodinia (ver BRITO NEVES, 1993), no início do Proterozóico Superior. Foi ainda notada a reativação das ZCT’s transamazônicas como falhas normais após a intrusão da segunda geração de diques e anteriormente à deposição da cobertura Bambuí, confirmada por: (1) estes falhamentos seccionaram os diques desta geração mais nova, num regime rúptil (as ZCT’s tornaram-se cataclasitos), e (2) as litologias Bambuí não se encontram cislhadas em função desta reativação. Esta reativação pode ser explicada de acordo com o perfil da figura 2b: após o soerguimento causado pela ascensão da pluma mantélica (fig.2a), seguiu-se o
abatimento de blocos dentro da península São Francisco em formação, ao esvair-se a atividade da pluma (fig.2b). Este abatimento dos blocos do CGGM se deu ao longo das ZCT’s pré-existentes, originando nelas falhamentos normais que seccionaram os diques da segunda geração.

REFERÊNCIAS

Figura 1: Arcabouço geológico da área estudada. 1: falhas transcorrentes transamazônicas reativadas como falhas normais no Brasiliano; 2: falhas de emprunt transamazônicas; 3: diques maficos 1ª geração (metamorfizados); 4: diques maficos 2ª geração (não metamorfizados).

Cidades: BH-Belo Horizonte; PM-Pará de Minas; RN-Ribeirão das Neves.
Figura 2 - Esquema hipotético para a intrusão dos díques máficos da segunda geração (segundo o modelo de FAHRIG, 1987), baseado em dados regionais.
GNEISS SEQUENCES IN THE GUAXUPÉ GRANULITE MASSIF,
AND THE NATURE OF FLUIDS

ASIT CHOUDHURI - IG UNICAMP
DAILTO SILVA - IG UNICAMP
GERGELY SZABÓ - IG USP
JOSÉ RENATO NOGUEIRA - IG UNICAMP

INTRODUCTION

A wide variety of rocks, both on a local as well as regional scale, constitutes the high-grade gneisses of the Guaxupé region (Choudhuri et al., 1992). On the basis of field observations, we have established an approximate and relative chronological sequence for some of the gneisses, while some of the finer features described below were noted from petrographic studies. The relationships between the gneisses can still be recognised by careful examination, although most of the structures have been parallelized by high strain deformation. Furthermore, we have tried to relate these gneisses and their possible position to the nature of the fluids analysed by preliminary fluid inclusion studies.

GNEISS SEQUENCES FIELD RELATIONS HAVE SO FAR REVEALED THE FOLLOWING FEATURES FOR THE HIGH GRADE GNEISSES:

1. a clearly discordant contact between "underlying" coarse grained charnockitic gneiss and finely banded enderbite gneiss containing thin mafic granulite bands;
2. cross-cutting thin enderbite vein in granulite facies metagabbro, apparently injected during metamorphism;
3. there are no signs of discordance between enderbite gneiss and the mafic granulite bands, whatever the thickness of the latter. There are, however, injections of igneous-textured tonalite bands traversing but not cross-cutting mafic granulite;
4. dioritic to tonalitic segregation veins in folded and banded amphibolite and mafic granulites, later crosscut by pink granitic gneiss;
5. largely concordant pink migmatitic injections in banded mafic granulite and enderbite gneiss with rare, local cross-cutting relations. These injections are mainly igneous-textured granitic bands, while at one outcrop the band cross-cutting the granulite is itself strongly oriented due to high strain;
6. massive, fairly homogeneous, pink granitic gneiss that has been subjected to high strain deformation. These gneisses are found in many places in the granulite belt, and appear to be a late tectonic feature. Except for the discordance of point 1 above, however, no other relation could be confirmed;
7. pink pegmatitic dykes cutting all the above; late massive grey granitic rocks with pink discoulouration veins with fracture filled epidote indicating the passage of late aqueous fluids probably belong to this stage.

Evidently, the gneiss associations in a high grade terrain are complex, and this is the picture that emerges for the structure and composition of the middle-lower crust. The formation of the crust in the area involves different stages that include metamorphic and magmatic processes starting deep down in the granulite facies at P-T estimates: maximum 9.0-8.5 kb / 860-880 °C and minimum 6.6-5.5kb / 720-650°C (Iyer et al.in prep.). One of the mafic granulites for which P-T estimates were obtained (in two samples - A and B - of mafic granulites) is intercalated with migmatitic pelitic garnet gneiss and sillimanite-garnet quartzite, implying the same metamorphic grade for these latter rocks. This process ends with the injection of pink granitic material at shallower levels in the course of uplift.

FLUID-INDUCED ALTERATION

Although alteration of granulite facies parageneses has as yet not been assessed on a regional scale, our observations can be summarized for the moment by grouping these effects into high temperature and low temperature types. Fluid-induced high temperature effects are those by which hornblende forms at the cost of pyroxenes and continues to be stable in the granulite facies. Another mineral that forms in the granulite facies is scapolite (Ca-rich, high birefringence), possibly at the expense of plagioclase by the action of CO₂-rich fluids; where it occurs, scapolite has recrystallized and is stable with the granulite facies minerals. High CO₂ activity has been proposed for the occurrence of scapolite in granulites by Moecher and Essene (1991). Low temperature transformations result in the formation of biotite, carbonate veins in ferromagnesian minerals, late rare chlorite, and finally epidote in hydrothermal veins and fractures. At one place we have observed intense injections of quartz veins that have, however, caused little retrogression in the enderbites which they traverse. The quartz was
possibly deposited from high temperature hydrothermal solutions, since silica shows high solubility in aqueous fluids at high temperatures and pressures (Kennedy, 1950). All these alteration effects are incipient, granulite facies assemblages being largely preserved in most cases, indicating lack of large quantities of fluids as well as absence of pervasive fluid flow.

Fig.1 - *P-T* diagram showing: isochors for CO$_2$ fluid inclusions in granulites (dotted lines), isochors are for low and medium CO$_2$ density (dCO$_2$) fluid inclusions; boxes (1&2) for maximum and minimum P-T estimates for two Guaxupé maﬁc granulites (A & B); dashed lines A & B represent possible uplift paths from box 1 to box 2, from granulite to amphibolite facies; kyanite-sillimanite boundary from Paterson (1992); curves 0.25 and 0.4 are X$_{H_2O}$ for hornblende breakdown from Wells (1979); and the reaction olivine + plagioclase = orthopyroxene + clinopyroxene + spinel from Kushiro and Yoder (1966).

Isochore (density curve in P-T space) determinations were made using Holloway equations in software - FLINCOR - (Brown, 1989). The results show no isochors crossing peak P-T box, and so far no CO$_2$-rich peak metamorphic fluids have been detected, and a case may be made for fluid-absent granulate formation (Stevens and Clemens, 1993). However, the nature of fluids can be related to a retrograde amphibolite facies stage in the granulate belt (Fig.1), and the fluid inclusion data can be summarized as follows (densities in g/cm3):

1. medium density pure CO$_2$ in banded enderbites 0.937; low density pure CO$_2$ inclusions in the same enderbites 0.767 (Fig. 1);
2. medium density CO$_2$ 0.9 (Fig.1), pure aqeous and N$_2$ inclusions as well as CO$_2$ + N$_2$ inclusions in garnetiferous gneiss - 0.889;
3. low density CO$_2$: 0.739 and 0.622 (Fig.1), and H$_2$O inclusions in garnet.
4. late stage grey granite gneiss with aqueous-brine inclusions with saturation crystals - possibly a metapelitic source (see e.g. Tourret and Dietvorst, 1983; Newton, 1986).

Separate CO$_2$ and N$_2$ inclusions may represent different fluid pulses as both of them are otherwise miscible. The trapping of these fluids might also reflect a residual fluid that remained after the dissolution of water in partial melts under high grade conditions. Some of the charnockitic gneisses may have formed this way - by syntectonic emplacement of such partial melts at depth, as suggested previously (Choudhuri et al., 1992). On the whole, the nature of fluids can be related to high or low temperature alteration effects. Further studies require that we integrate our observations over a large area and look for peak metamorphic fluids.

ACKNOWLEDGEMENTS

A.C. is grateful to CNPq for financial support received during this investigation. We thank Roberto P. Xavier for confirming nitrogen by Raman spectroscopy.

REFERENCES

KENNEDY,G.C. 1950. A portion of the system silica-water. *Econ. Geol.* 45, 629

KINEMATIC ANALYSIS IN THE NEOPROTEROZOIC ARAÇUAÍ BELT, SE BRAZIL: TECTONIC IMPLICATIONS FOR GONDWANA ASSEMBLY

LUIZ J. H. D'EL-REY SILVA - IGC/UNB
ANTÔNIO C. PEDROSA-SOARES - CPMTC/IGC/UFMG
REINHARDT A. FUKU - IGC/UNB

A kinematic analysis of the major tectonic elements found in the Neoproterozoic Araçuaí Belt (Fig. 1), and new field observations on structural-metamorphic relationships, together with Proterozoic geology data for Brazil and Africa, provide evidence for a new insight on the tectonic evolution of Pan-African/Brasiliano fold belts. The northern limit of the Araçuaí Belt with the São Francisco Craton is a nearly 30 km wide zone of ductile deformation bounded by two high-angle, NW-SE trending, sinistral shear zones across the towns of Itororó, Itapebi and Potiraguá (Fig. 1). The cratonic area, farther to NE, is also affected by two SW-NE trending dextral shear zones passing nearby Itabuna. The western limit is marked by several thrusts generally trending N-S and dipping at low to high angles to ESE (frontal ramps). The limit with the Guanhães Block is the WSW-ENE trending sub-vertical, Capelinha-Novo Cruzeiro dextral shear zone (Fig. 1). Eastwards of Novo Cruzeiro the shear zone bends to NE, and is marked by straight aeromagnetic anomalies going in the direction of Salto da Divisa.

Deformation records a major event (D_1) whereby a penetrative regional foliation S_1 was formed sub-parallel to bedding. It contains an E-W or ESE-WNW stretching lineation L_x which is generally low-moderate plunging (Pedrosa-Soares et al. 1992). To the W, S_1 is a slaty cleavage or a micaceous foliation associated to meso to megascopically, generally sub-horizontal, asymmetrical F_1 folds and low to high-angle thrusts. In the inner belt S_1 passes into a strong schistosity or a metamorphic banding in higher grade rocks. S_1 may be affected by a crenulation foliation or a weak schistosity (S_2 or S_{1a}), associated with minor-scale, generally asymmetric folds. L_x, defined by prolate-shaped clasts and also ribbons of quartzfeldspar, is regionally parallel to a mineral lineation of micas, hornblende, sillimanite, kyanite, quartz and feldspar. S_1 controls the arc-like geometry of the belt (Fig. 1), as it rotates gradually into parallelism with the high-angle boundary shear zones, where typical features of lateral ramps are found. In these areas, sub-vertical S-C mylonitic foliations and sub-horizontal stretching lineations around sickenlens and fault-plane steps also occur in large-scale outcrops (road-cuts, quarries, water falls), allowing confident determinations of the sense of slip that confirm earlier predictions (Mascarenhas et al. 1979, Pedrosa-Soares et al. 1992).

The gradual change in the trend of the structures, their kinematic compatibility and the gradual increase in the associated barrovian metamorphism (Pedrosa-Soares et al. 1993), indicate a structural-metamorphic continuity between frontal and lateral ramps. The Capelinha-Novo Cruzeiro shear zone displays intense amphibolite grade ductile flow, as folds are mainly tight (with very thickened hinges), the axial planes trend W-E or WSW-ENE, the dip is moderate-high into northerly directions (fold vergence to the south), and the fold axes are parallel to L_x. Secondary, sinistral strike-slip ductile faults also occur westwards of Capelinha, trending N to SE-NW and changing to NE to form a frontal ramp (Fig. 1). Between Almenara and Salto da Divisa (Fig. 1) the S_1 foliation becomes regionally sub-vertical and turns into an S-C high-metamorphic grade mylonitic structure along the Salto da Divisa shear zone (Fig. 1). In this zone and at the eastern end of the Itapebi-Potiraguá and Itororó faults, mesoscopic folds affecting high grade gneisses-orthogneisses are tight, upright, sub-horizontal, with fold axes parallel to L_x. At the northeastern boundary of the belt there is indication that deformation of the cratonic margin took place at increasingly ductile conditions towards S-SE. About 3 km westwards of Itororó (Fig. 1), no fault-related foliation or folds are seen in the outcrop of the Itororó fault, and the shear zone is marked by spaced sub-vertical planes of brittle fracture with sub-horizontal strie lineations and sinistral-sense steps, in well-banded tonalites. Farther to the W, halfway to Itapeitinga, S-C mylonites characterize the outcrop of the sinistral Itapebi-Potiraguá fault. Entering Itapeitinga, in the main road-cut outcrop, banded-gneisses of amphibolite grade are affected by sub-vertical, ≤1m-scale, upright folds cross-cut by discrete, cm-wide, dextral shear zones (S-C relationships) which are sub-parallel to the main shear zones.

The kinematics along the regional faults implies a movement of basement slices and sediments towards ESE, into the inner belt. To account for the available data, tectonics is most likely one of top down to ESE extensional delamination of cratonic margin rocks and sedimentary cover. The suction of these slabs above various low-angle detachments, and their under-
thrusting down into the inner belt would lead to crustal thickening and its consequences. Additional support comes from frontal ramps in road cuts around Itambe, and between Francisco Sa and Salinas (Fig. 1). About km from Itambe (Itapeitinga road), a well-developed S-C mylonitic foliation (S1) and a down-dip Lx1 (sillimanite-hornblende) in banded (metre-scale) amphibolitic gneisses clearly indicate a top down movement to 158°. Reverse movement occurs locally, along one of the banding planes. Similarly, the superposition of a strong S2 crenulation cleavage imprinted on S1 in hematite quartzites to the west of Salinas (Fig. 2a-b) implies a progressive deformation under the same metamorphic grade, whereby a syn-S1 reverse slip was superimposed by normal sense of movement (Fig. 2c-d).

A system composed of frontal extensional ramps capable of slicing the rocks down to ESE, and bounded by northern and southern lateral ramps (the northern half is cartooned in Fig. 3), may explain all the relationships across the Araquai Belt, and also explains similar fault-belt relationships found in the West Congo Belt (Fig. 4; cf. Pedroso-Soares et al. 1992). In fact such a system is even required, because if the São Francisco-Congo Craton was a large continental block through the Proterozoic (Fig. 4; cf. Trompette 1994, and many authors before) it is hard to believe that the São Francisco and the Congo Cratons could move independently into converging directions, as currently evoked in all conventional plate tectonics models to explain the Araquai-West Congo Belt system. The tectonic evolution of surrounding fold belts by extensional delamination and inwards tectonic transport of sucked slices relates to continuous uplift of cratons and eliminates the need of both cratons moving horizontally, towards each other. This new model of tectonics incorporates evidence for Pre-Proterozoic uplift of the São Francisco Craton and extensional delamination of its margins (D'el-Rey Silva 1992, 1994; D'el-Rey Silva and McClay 1995) and provides a connection between plate tectonics processes through geological times.

ACKNOWLEDGEMENTS

We thank CNPq and FINEP for Grants numbered 400037/93-9 APQ and 1655, respectively. The findings here resumed come from field work carried out on 1993 and 1994.

REFERENCES

Figure 3 - Cartoon illustrating the extensional tectonic evolution of the Araquá Fold Belt. The half northern part of the extensional system, here shown, comprises three NW-SE trending lateral ramps (the Ip-Ir = Itapebi-Itororó fault, Ip-P = Itapebi-Potiraguá fault, SD = Salto da Divisa shear zone) and two low-angle, frontal SE dipping extensional ramps, all associated with thrusts and folds. See text.

Figure 4 - Simplified map of part of the São Francisco - Congo Craton, displaying the main tectonic features of the Araquá and West Congo Fold Belts. Compiled mainly from Pedrosa-Soares et al. (1992), with additional data from Trouper (1994) and Mascarenhas et al. (1984), respectively for the Cameroon Gabon Congo, and Serrinha Blocks. See text.

Basement reworking
• = partial
** = total

GB = Guanhães Block
ESTIMATIVA DAS CONDIÇÕES DE CRISTALIZAÇÃO DO GRANITO BORRACHUDOS NA REGIÃO DE DORES DE GUANHÃES, MG

MARIA LOURDES SOUZA FERNANDES - CPMT/IGC/UFMG
ESSAID BILAL - École des Mines/Saint-Etienne
JOSÉ MARQUES CORREIA NEVES - Departamento Geologia/IGC/UFMG
ANDRÉ GIRET - Université Jean Monet
KELLY DE VASCONCELOS COSTA - bolsista IC/UFMG

1 - INTRODUÇÃO

Foram efetuadas análises químicas por microsonda eletrônica em feldspatos, biotita e anfibólio do maciço granítico de Doreis de Guanhães, MG. Os resultados e as conclusões a que se pode chegar a partir desses dados constituem o escopo deste trabalho.

2 - CONTEXTO GEOLÓGICO

O arcabouço geológico da região de Doreis de Guanhães (MG) é constituído por gnaisses ortoderivados pertencentes à Suite Guanhães. Sobre estas litologias repousa uma sequência de gnaisses e xistos de origem metavulcanico-sedimentar, intercalada por níveis anfibolíticos, quartarizes e ferguigiosos nomeados Grupo Guanhães. Os granitos da Suite Borrachudos (1.7 Ga, Dossin et al., 1993) intrudem ambas unidades (fig. 1). São rochas alcalinas, caracterizadas por elevados teores em SiO2, Na2O+K2O, FeO, Zr, Nb, Ga, Y e ETR e baixas concentrações de CaO, MgO e Sr; ou seja, apresentam assinatura geoquímica de rochas posicionadas em ambiente anorogênico (Fernandes et al., 1995), estando relacionadas à abertura do rift Espinhaço.

3 - PETROGRAFIA

Três facies podem ser distinguídos no maciço estudado: granito a anfibólio; gradiente a anfibólio e biotita e granito a biotita. Esses granitos têm coloração rosa a cinza e granulação média a grossa; apresentando foliação na borda do maciço. Ao microscópio, eles são constituídos essencialmente por grandes massas de microclina mesoverticípca subédrica a anédrica e quartzo xenomórfico. A seguir, em ordem de abundância e tamanho, têm-se albita. Os demais minerais tendem a formar aglomerado que ocorrem intersticialmente aos constituintes fúscicos. Os principais minerais máficos são anfibólio e biotita, os quais comumente contêm inclusões de minerais acessórios como zircão, allanita, apatita e minerais opacos. Fluorita é amplamente distribuída e tardia. Além destes, granada ocorre localmente e piroxênio de composição hedenbergítica foi observado em uma lâmina do granito a anfibólio e biotita.

3 - ESTUDOS QUÍMICO-MINERALÓGICOS

O anfibólio é um mineral frequente nas rochas estudadas, podendo ser observado tanto em cristaís isolados como formando corona ao redor do piroxênio; por vezes, ele próprio passa a biotita. Sua composição é homblenda-hastingsítica (fig. 2) comparável à dos anfibólios de granitos anorégênicos protozoicos (Anderson, 1983).

A biotita é um constituinte importante nestas rochas e apresenta inúncios texturais de ter se cristalizado lardamente com relação ao anfibólio. Ela é de composição anitna-siderofilita (fig. 3), com teores em Al2O3 variando entre 2,5 e 3,0 a.f.u. para um conteúdo em Mg sempre inferior a 1, compatível com composição de biotitas de granitos alcalinos a subalcalinos (Nacht, 1986).

Estas rochas são caracterizadas pela presença de 2 feldspatos: albita e microclina. A primeira apresenta composição variável de Ab90-Or10-An0-54 e Ab90-Or90- An0. A segunda é frequentemente mesoperítica com composição oscilando entre Ab90-Or10-An0 e Ab4-Or96-An0.

4 - IMPLICAÇÕES PETROLÓGICAS

Através da fórmula proposta por Schmidt (1992) e programa de Tindle & Weber (1994), a partir da composição química dos anfibólios, pode-se especular que os granitos foram cristalizados sob pressão total em torno de 6,2 kbar, isto é, uma profundidade média de 23km. A cristalização da hastingsita é favorecida por baixas fugacidades de oxigênio (Thomas, 1982). A distribuição do aluminio entre a posição tetraédrica do anfibólio e do plagioclásio é função da temperatura de cristalização dos dois minerais e da pressão (Blundy & Holland, 1990), sendo possível estimar uma temperatura de cristalização do anfibólio estudado na ordem de 840°C.

A presença de magnetita e ilmenita implica em condições de baixa fugacidade de oxigênio, próxima do tampo QFM (fig. 4), como já atestado pela
composição do anfibólito. A presença de 2 feldspatos alcalinos atesta o caráter subsolvus desse granito e reflete cristalização sob P_{1H2O} superior a 2.5 kbars (Luth et al., 1973)

5 - CONCLUSÕES

Esses granitos alcalinos a subalcalinos são a primeira manifestação magnmática ácida ligada à abertura do rift Espinhaço. O caráter precoce (1.7Ga) é confirmado pelo seu posicionamento em profundidade (23km), atestando que a crosta estava ainda relativamente espessa. Esses granitos possuem as mesmas características químicas e mineralógicas de seus equivalentes norte-americanos relacionados à abertura do rift Grenville (Anderson, 1983).

5 - AGRADECIMENTOS

Os autores agradecem à PRPq/UFMG e à FAPEMIG, pelo suporte financeiro e ao CPMTC/UFMG, ao Depto. de Geologia da UFMG, ao Département de Géochimie da École des Mines de Saint-Etienne.

6 - BIBLIOGRAFIA

Figura 2: Composição de anfibólios do granito de Dores de Guanhães. (ga: granito a anfibólio; ab: granito a biotita; gb: granito a biotita; gp: granito a anfibólio, biotita e promênol; gp: granito a anfibólio, biotita e granada)

Figura 3: Composição de bolhas do granito de Dores de Guanhães. (Mesma legenda da figura 2; dados do Wolf River Batholith de Ander 1983).

Figura 4: Estimativa das condições de cristalização de granitos anorogênicos de termos da temperatura e fugação de oxigênio.
GEOLOGIA DO GREENSTONE BELT RIO DAS VELHAS NO DISTRITO AURÍFERO DE SÃO BARTOLOMEU, MINAS GERAIS

ALEXANDRE GOLIA - UFOP (mestrado em Geologia)
EURÍPEDES M. DA CUNHA - UFOP 9graduação em Geologia)
CLAUDINEI G. DE OLIVEIRA - DEGEO/UFOP
GERALDO DE SOUZA FERREIRA - DEGEO/UFOP

INTRODUÇÃO

O presente trabalho teve como objetivo o estudo da litoestratigrafia e da estruturação do Greenstone Belt Rio das Velhas no Distrito Aurífero de São Bartolomeu, localizado a leste do Complexo do Baçalho (Fig. 1). Os litotipos mapeados são, predominantemente, de natureza vulcansedimentar, submetidos a metamorfismo de fácies xisto-verde a anfibolito. Intrusões metabásicas e veios turmalínicos cortam a sequência, ora concordantes, ora discordantes. Uma faixa de rochas quartzo-feldspáticas bandadas, supostamente pertencentes ao Complexo do Baçalho, ocorre na parte central da área, justaposta tectonicamente à sequência vulcansedimentar.

UNIDADE METAVULCÂNICA

A maior representatividade desta unidade ocorre na porção oeste, próximo ao contato com o Complexo do Baçalho. Na porção leste é menos expressiva, estando intercalada com os metassedimentos. Análises petrológicas permitiram distinguir metavulcânicas máficas e felsicas. Toda essa unidade possui forte foliação penetrativa, com granulação variando de fina a grossa. A associação mineral comum das metavulcânicas máficas é caracterizada por anfibólio actinólítico (40%), quartzo (35%), biotita (10%), clorita magnesiana (5%) e epidota/célinozóita (5%) e, em menores proporções, plagioclásio, sericita, granada e titanita; sendo acessórios a magnetita, rutilo, turmalina e zircão. Em algumas porções a composição mineralógica desses litotipos é constituída, predominantemente, por clorita e quartzo. As metavulcânicas felsicas, menos representativas, possuem granulação fina e são compostas por quartzo e sericita e, subordinadamente, plagioclásio e carbonatos.

UNIDADE METASSEDIMENTAR PSAMOPELÍTICA

Os litotipos dessa unidade predominam na porção leste da área. São representados por quartzitos, quartzo-mica xístos, metapelitos, metacherts e metaconglomerados. Petrograficamente, os quartzitos apresentam variações de sericita-quartzito, fuchsitato quartzito e sericita-clorita-quartzito. Os metapelitos, predominantemente na porção central da área, possuem granulação média a grossa e são constituídos em ordem decrescente de abundância por quartzo, biotita, sericita, estaurolitina e cianita. Os metaconglomerados, que têm matriz composta por quartzo, sericita e plagioclásio, apresentam seixos polimétricos estirados com até 20 cm de comprimento.

GEOLOGIA ESTRUTURAL

Distinguem-se três fases de deformação, D1, D2 e D3. A fase D1, sob grande influência da estruturação do Complexo do Baçalho, é caracterizada pela foliação penetrativa S1, com direção aproximadamente nortesul e mergulho acentuando-se de leste (0-20°) para oeste (60-90°), pela foliação milonítica Sm1, paralela à foliação S1; pela linhação mineral Lm1 e pela linhação de estiramento de seixos Le1, subhorizontais. Movimentos transcorrentes dextrais entre os planos das foliações S1 e Sm1 sugerem que existe, entre o Anticínico de Mariana e o Complexo do Baçalho, uma megaestrutura em flor positiva (Fig. 2). A fase D2 está caracterizada por zonas de cisalhamento subverticais (Sm2) com direção norte-sul e linhações de estiramento mineral (Le2), também subverticais. Estruturas do tipo S-C, presentes nas zonas de cisalhamento, caracterizam-nas como falhas normais de alto ângulo, evidenciando um caráter extensional. A fase D3 é materializada por extensas e discretas zonas de cisalhamento de caráter dâctil-rúptil geradas por falhas transcorrentes subverticais sinistros. Tais zonas de cisalhamento, dentre as quais destaca-se a Zona de Cisalhamento Nova Lima-São Bartolomeu, possuem direção geral NW, e condicionaram várias ocorrências auríferas, incluindo a Mina Tapera.

CONCLUSÃO

O Greenstone Belt Rio das Velhas no Distrito Aurífero de São Bartolomeu encontra-se estruturalmente influenciado por três megaestruturas: pelo Complexo do Baçalho, a oeste; pelo Sinclinal Dom Bosco, a sul; e, pelo Anticínico de Mariana, a norte e leste. Tais influências tecênicas foram responsáveis pela estruturação em flor positiva envolvendo o Complexo do Baçalho e a sequência supracrustal. Entretanto, o núcleo do Anticínico de Mariana, representando a porção oeste da área, permaneceu com
baixa intensidade de deformação, onde predomina o Sistema NW de cisalhamento transcorrente, responsável pela mineralização aurífera da região.

AGRADECIMENTOS

Os autores são gratos à DOCEGEO (Belo Horizonte) pelo apoio financeiro aos trabalhos de campo e ao Professor Geraldo de Souza Ferreira (UFOP) pela ajuda na dissertação final do trabalho.

BIBLIOGRAFIA

Figura 2 - Perfil esquemático da área estudada mostrando a estrutura em floc positiva envolvendo o Complexo do Bação e a sequência supracrustal do Greenstone Belt Rio das Velhas, sugerida pela foliação principal S_1 e pela linhagem de estiramento de seixos L_{e1}.
DIABÁSIOS DO ALTO RIO DOCE, MG

HANNA JORDT-EVANGELISTA - DE GEO/EM/UFOP
ZULIMEIRE C. COTTA - DE GEO/EM/UFOP

INTRODUÇÃO
A ocorrência de diques diabásoides anorogênicos na porção sul do Cratão do São Francisco tem sido amplamente documentada. Teixeira (1985) encontrou idades protérozoicas variando entre 2300 e 570 m.a. para rochas básicas e metabásicas a oeste de Belo Horizonte. Diques de diabásios também são comuns no embasamento oriental do Quadrilátero Ferrífero. No município de Dom Silvério, diques de diabásio cortam um corpo aflorante numa área de 50 km² às margens do alto Rio Doce (25 km ao norte de Ponta Nova e 10 km a leste da cidade de Dom Silvério), constituído de rochas charnockíticas de origem magmática (Jordt-Evangelista et al., 1994). O objetivo deste trabalho é apresentar os resultados das investigações de campo, da pterografia e da geoquímica destes diabásios.

GEOLOGIA REGIONAL
Os diabásios ocorrem em diques com largura variando de centímetros até 10 m. São intrusivos nas rochas charnockíticas e em outras unidades litológicas que compõem a região dos municípios de Dom Silvério e de Rio Doce, a saber, nos metassedimentos do Grupo Dom Silvério e nos gnaisses bandados regionais. Nas bordas dos diques aparece, às vezes, uma foliação incipient, que se formou em decorrência de fenômenos de deformação e metamorfismo. Este evento tectonometamórfico afetou os diabásios com uma intensidade variável. Enquanto as rochas menos afetadas preservam minerais e texturas magmáticas (fotos 1 e 2), nas mais alteradas as feições ígneas foram em grande parte obliteradas, e as rochas são, na realidade, metadiabásios.

PETROGRAFIA
A composição modal média dos diabásios e metadiabásios, em porcentagem volumétrica, é: plagioclássio = 45,0, anfibólio = 30,0, clinoiroxênio = 14,5, granada = 5,0, opacos = 5,0, biotita + quartzo + carbonato + apatita = 0,5.

Destaques, o plagioclássio, o clinoiroxênio, os minerais opacos e apatita são de origem magmática. Anfibólio, granada, biotita, quartzo e carbonato são de origem metamórfica, tendo-se formado às custas dos primeiros.

Os diabásios apresentam uma textura intergranular fina ou, nas rochas de granulação média, ela é subofítica (foto 1), compondo-se de plagioclássio sob a forma de ripas, de clinoiroxênio augítico e de minerais opacos. Podem ser porfíricos (foto 2), com fenocrístais tabulares de plagioclássio, que chegam a atingir 7 cm de comprimento. Nos metadiabásios a textura é graxonematoblastica. A augita é verde clara ou castanho rosada e apresenta exsulção acicular de opacos e uma substituição marginal por intercrescimentos simplecticíticos, de origem metamórfica, compostos de anfibólio verde oliva (possivelmente horblenda) e quartzo vermeiforme. Nos metadiabásios, a substituição da augita por horblenda e quartzo já foi completa. Os minerais opacos também sofreram uma alteração metamórfica marginal, com formação de aureólas de granada e de biotita castanho avermelhada. A apatita, em cristais aciculares muito longos, exibe um típico hábito magmático.

GEOTERMOMETRIA
Análises de microsonda em granadas e biotitas, que constituem corônicas de origem metamórfica em torno dos minerais opacos, foram utilizadas para estimar as condições de temperatura do metamorfismo a que os metadiabásios foram submetidos. A biotita contém, em média, 5% em peso de TiO₂ e a sua razão Fe/Mg é 0,56. As granadas são almândinas, cuja composição, em termos de componentes químicos, é Almandina 64,7, Grossularita 18,5, Piropto 10,7, Espessartita 3,8, Andradita 2,3. A razão (Mn+Ca)/(Mn+Ca+Fe+Mg) da granada é 0,25. Este valor é relativamente elevado, o que pode acarretar erros nos resultados dos geotermômetros granada-biotita de Ferry & Spear (1978) e de Perchuck & Lavrent’eva (1983), utilizados neste trabalho (segundo Ferry & Spear, op. cit., o limite máximo admissível para esta razão é 0,2). A temperatura média obtida nos cálculos geotermométricos foi de 625°C, que corresponde as condições da fácie anfibólitica superior. Considerando que as rochas supracrustais do Grupo Dom Silvério das proximidades sofreram um metamorfismo na fácies anfibólitica baixo (Jordt-Evangelista, 1992) pode-se extrapolar que a temperatura calculada pela geotermometria nos metadiabásios é por demais elevada. A diferença provavelmente é decorrente da composição química da granada, relativamente rica em Ca, não se adequando para o geotermômetro utilizado.

GEOQUÍMICA
A norma CIPW das rochas analisadas mostra um caráter próximo da saturação em sílica, apresentando insignificantes quantidades ou de olivina, ou de quartzo normativos. A quantidade de olivina normativa tende a ser maior nas rochas mais metamorfizadas, em que o volume de anfibólio
secundário é maior e, consequentemente o de clinopiroxênio é menor. É possível, que fluidos percolantes ricos em H₂O, indispensáveis à transformação de piroxênio em amfibólio, tenham dissolvido e retirado uma parte do quartzo, que também é um produto desta transformação. Desta maneira, as rochas teriam adquirido uma deficiência em sílica, do que resultaria a olivina normativa.

No diagrama FeO*-(Na₂O+K₂O)-MgO de Irvine & Baragar (1971) os diabásios são toleíticos (fig.1). No diagrama (Zr/Y)-Zr de Pearce & Norry (1979) eles caem no campo dos basaltos intraplaque (fig.2). Este ambiente tectônico está de acordo com o seu caráter anorogênico.

REFERÊNCIAS BIBLIOGRÁFICAS

Fig.1: Diagrama AFM de Irvine & Baragar (1971) para os basaltos do Alto Rio Doce. FeO*+ferro total

Fig.2: Diabásios do Alto Rio Doce no diagrama de discriminação Zr/Y - Zr de Pearce & Norry (1979).

Foto 1: Textura diabásida: ripas de plagioclásio (basalto) intercrescidas com augita (relevo alto) e opacos.

Foto 2: Textura porfirítica: fenocristais de plagioclásio e matriz intergranular fina com plagioclásio, augita e opacos.
MAPEAMENTO GEOLOGICO NA ESCALA 1:25.000 NA FOLHA SIMONÉSIA (MG)

LUCIANO DE MELO MOREIRA - IGC/UFMG (Mestrando)
ANTÔNIO GILBERTO COSTA - CPMT/C/IGC/UFMG
CARLOS ALBERTO ROSIÈRE - CPMT/IGC/UFMG
CLAÚDIA DE SANCTIS VIANA - Geóloga
WERUSKA CAMPOS VIDAL - Geóloga
ISABEL EUSTÁQUIA DE QUEIROZ - Geóloga

INTRODUÇÃO

A área mapeada localiza-se nos municípios de Simonésia e Manhuacu na porção centro-este do estado de Minas Gerais e encontra-se dentro do Complexo Migmatítico-granulítico de Minas Gerais (Schobbenhaus et al., 1984), que integra a zona Oriental da Província Mantiqueira (Almeida & Litwiniski, 1984). Em parte esta área encontra-se inserida no Complexo básico-ultrabásico de Manhuacu (Costa et al., 1992).

GEOLOGIA DA ÁREA

Para a área mapeada, foram definidas três unidades litológicas, assim denominadas: Unidade Sossego, Unidade Simonésia e Unidade Palmeira.

A unidade Sossego, é constituída por gnaisses e granulitos peraluminosos e quartzitos. Os gnaisses são constituídos por biotita (B), granada (Gar), sillimanita (Sill), cordierita (Cord), quartzo (Q) efeldspato potássico (K-fs) e foram classificados como biotita-granada gnaisse, biotita-sillimanita-granada gnaisse e biotita-cordierita-sillimanita-granada gnaisse. Granulitos peraluminosos mostrando textura granoblástica e granulação fina, ocorrem subordinados aos gnaisses peraluminosos. Nas regiões de Sossego, Cabaceira do Rio Preto, Cachoeirão, Cambuta, Três Barras e Vista Alegre, afloram granulitos e gnaisses, podendo estes conter intercalações quartzíticas com ou sem a presença de aluminofilitos.

A Unidade Simonésia é caracterizada principalmente por rochas ortoderivadas gnaissificadas e granulitos subordinados, constituídos por hornblenda (Hb), biotita (Bt), plagioclásio (Plag), clinopiroxênio (Cpx), ortopiroxênio (Opx) e raramente granada. Esta unidade encontra-se subdividida em sub-unidade Barra de Simonésia, caracterizada por biotita-hornblenda gnaisse, e sub-unidade Monte Alverne, caracterizada por granada-piroxênio gnaisse, piroxênio gnaisse, e granulitos básicos. As rochas desta unidade ocorrem nos arredores de Simonésia e nas regiões de Barra de Simonésia, São Pedro, São Vicente, Lages e Monte Alverne.

Assim como os granulitos paraderivados, os granulitos ortoderivados são também de ocorrência restrita, constituindo corpos descontínuos, dentro tanto dos orto como dos paragnaisses. Apresentam comumente granulação fina, textura granoblástica e cor verde acinzentada.

A Unidade Palmeira apresenta rochas de caráter granítide, de composição tonalítica que estão presentes na região de mesmo nome, correspondendo a pequena porção da área mapeada.

Rochas básicas e ultrabásicas, também são observadas, ocorrendo como corpos isolados e boudinados, dentro de para e ortognaisses e foram identificados como sendo gabros, leucogabros, noritos, piroxenitos e tipos anortosíticos.

PETROLOGIA E METAMORFISMO

As rochas da área mapeada apresentam paragêneses condizentes com condições metamórficas da facies anfibolito alto, representadas por: Gar + bt, (2) Gar + Sill + bt + moscovita e (3) Gar + K-fs + Sill + bt, para rochas paraderivadas. Para as rochas ortoderivadas a paragênese dominante é: (1) Plag + Hb + bt.

Paragêneses primárias encontradas em rochas granulíticas da área mapeada, atestam as condições locais de alto grau metamórfico e são representadas por: (1) Cord + Sill + K-fs + Gar ± hercynita, (2) Cord + Sill + Gar + K-fs e (3) Gar + Sill + K-fs para as rochas paraderivadas. Para as ortoderivadas foram descritas: (1) opx + Plag ± Gar, (2) opx + cpx + Plag ± Gar e (3) Plag + opx + K-fs. Paragêneses secundárias, indicando condições de facies anfibolito médio ou mesmo xisto-verde, decorrem da atuação de processos retrometamórficos.

A ausência de sequências metamórficas progressivas, reforçam o papel das intrusões básicas no processo de granulização e no de fusão parcial das rochas gnaissicas (Costa et al., 1992).

Reações entre minerais das paragêneses primárias geraram minerais secundários, envolvendo, principalmente, processos de hidratação.

A granada, quando presente nas rochas ortoderivadas, apresenta-se no contato de cristais de
plagioclásio e ortopiroxênio, correspondendo ao resultado de reação entre estes dois minerais. Esta reação está associada ao aumento da pressão no sistema, à temperatura constante. Para as rochas parâlidas observa-se substituição de granada por cordierita, indicando condições de descompressão ocorridas na crosta e observadas apenas em certas porções da área mapeada.

As rochas granítoides da região apresentam composição tonalítica e encontram foliadas. Estas rochas mostram às seguintes paragêneses: (1) Plag + Q + hr b e (2) Plag + Q + bt.

FEIÇÕES ESTRUTURAIS

Por fotointerpretação, são evidentes grandes linhamentos que apresentam direções NNE-SSW e ENE-WSW, que se cortam, dando para região uma característica de "tabuleiro-de-xadrez".

As feições estruturais mais comuns na área são dobrar foliações, fraturas, linhas minerais e de estiramento.

As dobras normalmente, são intrafoliais, isoclinais, apertadas, de flancos rompidos, com eixos de direção N-S, paralelos as linhagens de estiramento e com baixo mergulho. As foliações mostram uma direção NNE-SSW a NNW-SSE, mesmo quando próximas de zonas de cisalhamento. Fraturas são comumente observadas mostrando direções NNE-SSW e NNW-SSE, cortando feições planares, bem como fraturas de direção E-W.

As linhagens minerais em direção N-S e mergulham em média entre 05 e 25º NS. As linhagens de estiramento, são subhorizontais definidas por cristais de quartzo fitado, sillimanita, biotita, hornblenda e piroxênios, com direção preferencial NS. Aquelas que tendem a ser paralelas ao mergulho da foliação, reforçam a idéia de uma tectônica transpressiva (Costa et al., 1993).

OBSERVAÇÕES FINAIS

Através dos estudos até agora efetuados na região torna-se possível estabelecer o seguinte:

- As rochas da região teriam sido submetidas a uma deformação dúctil-rúptil e posteriormente a uma deformação rúptil representada pelos linhamentos ENE-WSW, os quais não contêm linhagens paralelas a esta direção na área mapeada;
- Os grandes linhamentos estruturais de direção NNE-SSW e NNW-SSE estão associados a zonas de cisalhamento de caráter transcorrente, formadas posteriormente aos processos de granulatização e migmatização, decorrentes de uma tectônica colisional;

- Uma hipótese para a granulatização das rochas mapeadas seria através do calor transferido para a crosta em consequência da ascensão de magmas mantêlicos. Influsos de CO₂, proveniente do manto, conforme proposto por Newton (1989) e em parte confirmado por Martinez (1992), causariam reações de desidratação e diluição da fase fluida inicialmente rica em H₂O, com consequente formação de granulitos. A água aquecida deslocar-se-ia para níveis crustais superiores promovendo a migmatização de rochas situadas nestes níveis. Alterações destas rochas foram consideradas como sendo produtos dos processos de sorreguimento e transcorrência.

O processo de migmatização envolveu a fusão parcial de gaias peraluminosos e básicos em diferentes graus, do que é corroborado pela presença de diferentes volumes de mobilizados granítoides.

Granítoides de composição tonalítica da Unidade Palmeira podem representar grandes volumes de mobilizados, resultantes dos processos de fusão parcial envolvendo gaias ortoderivadas, ou ainda, podem corresponder à porções mais diferenciadas dos magmas básicos gerados no manto (Costa et al., 1992).

AGRADECIMENTOS

Os autores agradem a Fapemig pelo provimento de recursos, que financiam os trabalhos na área em estudo, a Fundação Biodiversitas pela apoio logístico.

REFERÊNCIAS BIBLIOGRÁFICAS

PETROGRAFIA E GEOQUÍMICA DOS GRANITÓIDES DA REGIÃO DE GALILÉIA, LESTE DE MINAS GERAIS

HERMÍNIO A. NALINI JR. - Ecole des Mines de Saint Etienne - França
ESSAÍD BILAL - Ecole des Mines de Saint Etienne - França
J. M. CORREIA NEVES - IGC/UFGM
ANDRÉ GIRET - Université Jean Monet - Ste. Etienne - França
JÚLIO C. MENDES - DEGEO/EM/UFOP

INTRODUÇÃO

A região de Galiléia (médio rio Doce) localiza-se na porção centro-setentrional da Província Estrutural Mantiqueira e a sudeste do Craton do São Francisco (Almeida et al., 1981). Os primeiros estudos desta região foram executados através do trabalho cartográfico de Barbosa et al. (1964). Posteriormente, na década de 70, em consequência da presença de pegmatitos fortemente mineralizados (metais rares, fosfatos, minerais gemológicos e industriais), foram elaborados alguns trabalhos de detalhamento geológico da região (Moura et al., 1978).

GEOLOGIA REGIONAL

A região de Galiléia (figura 01) é caracterizada por um embasamento gnássico e migmatítico de idade proterozóica inferior (dastos Rb/Sr da região de Tarumirim, sudoeste de Galiléia, Hasui et al., 1976) e por uma cobertura metassedimentar constituída de micáxis e a granada e estaurolita (Grupo São Tomé) e de sericita-quartzitos (Grupo Crenaque). As rochas do embasamento foram afetadas pelo Ciclo Transamazônico (2200-1800Ma) e pelo Ciclo Brasiliano (900-500Ma). Os metamassamentos foram deformados e metamorificados somente por este último. Essas rochas foram intrudidas por granitos e pegmatitos de idade 650-480Ma (composição de dados Rb/Sr e K/Ar em Vieira et al., 1993; Correia Neves, com. verbal).

O Ciclo Brasiliano foi responsável pelo desenvolvimento de falhas de emparrão, falhas direcionais e dobrás isoclinais meso- a megascópicas no embasamento e nas sequências metassedimentares. De uma maneira geral, os movimentos tectônicos possuem uma polaridade regional em direção ao oeste-noroeste. A foliação principal é plano axial de dobrás isoclinais e possui atitude média N24°W/70°NE. A lineação de estratificação é comumente horizontal, às vezes oblíqua. Tardiamente, ocorreu a geração de dobrás mesoscópicas abertas e de uma crenulação de crenulação nos metassedimentos.

Localmente, no interior dos granitos, ocorre o desenvolvimento de uma foliação tectônica. Esta foliação possui a mesma direção daquela da rocha encaixante e comumente caracteriza zonas de cisalhamento de alto ângulo.

As estruturas citadas acima parecem ter atuado de forma importante no condicionamento das intrusões graníticas.

CARACTERÍSTICAS PETROGRÁFICAS DOS GRANITÓIDES DA REGIÃO

Com base nos aspectos petrográficos, distinguem-se duas suítes graníticas:

- Uma suíte tonalito-granodiorítica (Suite Galiléia - SG) que se caracteriza por uma granulação média a grosseira e peia presença de plagioclásio cálcico fortemente zonado (de bytownita à oligoclásio), anfibólio do tipo hornblenda-tschermakita e de granada (almandina-grossulará). Essa suíte contém tanto enclaves de biotita-xistos como outros microgranulares ao anfibólio.

- Uma suíte leucogranítica (Suite Uruçum - SU) que é formada por granitos a duas micas e alaskitos. Essas rochas possuem uma granulação grossa com fencristais de ortoclasio (6-8cm) e se caracterizam pela presença de minerais acessórios tais como a turmalina e a granada (almandina - espessartita). Essa suíte contém somente enclaves de biotita-xistos.

Os corpos pegmatíticos mineralizados a elementos raros estão espacialmente associados a essas duas suítes e aos xistos do Grupo São Tomé. Esse último é a rocha encaixante principal da maior parte dos corpos pegmatíticos da região. Os pegmatitos são em geral zonados e tabulares, mas existem também corpos lenticulares, ramificados, fulhados e boudinados.

CARACTERÍSTICAS GEOQUÍMICAS DOS GRANITÓIDES DA REGIÃO

As duas suítes diferenciadas através dos aspectos petrográficos são claramente distintas quando são considerados os aspectos químicos. A SG possui caráter metaluminoso (0.9 a 1.1) e cálcico. As razões CaO/MgO, CaO/(Na2O+K2O) e MgO/TiO2 são comparáveis àquelas dos granitóides calcio-alcalinos. Os teores em Sr, Ba, Eu, Zr e Y dessa suíte são mais elevados que aqueles da SU.
Na rocha da SU a taxa de saturação em alumínio e a razão K/Na diminuem. Por outro lado, os teores de Na₂O (figura 02A), P₂O₅, Li (figura 02B), Nb, Rb e Be aumentam à partir dos granitos a duas nicas até os alaskitos. Esses mesmos elementos encontram-se consideravelmente abundantes dentro dos pegmatitos mineralizados, sugerindo que existe um parentesco genético entre os leucogranitos e os pegmatitos a elementos raros. A presença de turmalina dentro dos leucogranitos e dentro dos pegmatitos sugere que os líquidos graníticos estavam enriquecidos em B, o que explicaria o enriquecimento dos líquidos residuais em Na, Li, P, N₃, Rb e Be.

Os elementos terras raras levam-se dentro da mesma gamut de valores para as duas nicas. Quanto ao comportamento dos elementos terras raras pesados, pode-se observar que a SG possui valores 3 a 4 vezes mais elevados do que os da SU.

A razão Rb/Zr mostra o caráter pós-collisional nessas duas nicas (figura 02C). Os granitoides da SG mostram certa analogia com os granitoides de pós-collision e de arcos vulcânicos. Os leucogranitos da SU localizam-se entre o domínio dos granitoides de pós-collision (maiores números de amostras) e o domínio dos granitoides de sin-collision.

CONCLUSÃO

Pode-se diferenciar na região de Galiléia duas nicas graníticas (Suite Galiléia e Suite Uruçum) distintas em suas idades (cerca de 540Ma para a Suite Galiléia e de 503Ma para a Suite Uruçum) e em seus aspectos petrográficos e químicos, sendo que a Suite Uruçum parece ter uma ligação genética com os pegmatitos a elementos raros do local. De uma maneira geral, essas duas nicas podem ser comparadas às suites granodiorítico e leucogranítico do Maciço Central da França (Duthou, 1977).

Os granítoides dessas duas nicas foram intrudidos dentro de um ambiente tectônico de pós-collision, da mesma maneira que certos plutons da cadeia hercíniana do oeste europeu (Lagarde et al, 1992). Eles são posteriores ao período de espeppamento litosférico do Ciclo Brasileiro e encontram-se intimamente ligados a uma fase tardia caracterizada por grandes acidentes de natureza direcional e de alto ângulo de mergulho. Se os dados geoestratigráficos forem realmente confirmados, essas duas nicas representam a atividade magmática infra-cambriana a cambriana da região leste do estado de Minas Gerais.

AGRADECIMENTOS

A viabilização deste trabalho foi possível graças ao apoio da Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) e ao auxílio logístico do Departamento de Geologia da Universidade Federal de Ouro Preto e do Departamento de Geoquímica da Escola de Minas de Saint Etienne (França).

REFERÊNCIAS BIBLIOGRÁFICAS

Figura 01: Mapa geológico da região estudada. (mod. de Fontes et al., 1978)

Figura 02: A) Diagrama Na2O versus MgO, representando o enriquecimento em Na2O da Suite Urcum; B) Diagrama dos teores em Li versus MgO, o qual mostra o aumento dos teores em Li à medida que ocorrem termos mais evoluídos nos leucograniítos da Suite Urcum; C) Diagrama log Rb/Zr versus SiO2 (Harris et al., 1986), o qual mostra que as duas suites estudadas se posicionam preferencialmente no campo dos granitos de pós-collision.
CONSIDERAÇÕES PRELIMINARES SOBRE AS CONDIÇÕES DE PRESSÃO E TEMPERATURA DE CRISTALIZAÇÃO DOS GRANITÓIDES DA REGIÃO DE GALILÉIA, MINAS GERAIS

HERMÍNIO A. NALINI JR. - Ecole des Mines de Saint Etienne - França
ESSAÏD BILAL - Ecole des Mines de Saint Etienne - França
J. M. CORREIA NEVES - IGC/UFMG

INTRODUÇÃO
Na região de Galiléia são identificadas duas suites granítoides tardi-brasilianas: a Suite Galiléia (SG) caracterizada por rochas tonalito-granodioríticas e a Suite Urucaum (SU) caracterizada por granitos a duas micas (Nalini Jr. et al., 1995, neste volume). O estudo mineralógico e químico (Micronova Camebax à Fontainbleau e à Clermont Ferrand - França) dos anfibólios e granadas presentes nas rochas da SG e das granadas presentes nos granitos da SU, permite que se façam algumas considerações preliminares sobre as condições de pressão e temperatura de cristalização desses minerais quando da colocação (emplacement) dos corpos dessas suites.

MINERALOGIA E QUÍMICA DOS ANFÍBÓLIOS E GRANADAS
Os anfibólios foram identificados nos termos menos evoluídos da SG. Eles são de coloração verde garrafa, normalmente euédricos a subbédricos, às vezes mostrando a clivagem típica (120°) e maclas. Comumente atingem 1 à 2 milímetros e possuem inclusões de plagioclásio, zircão, opacos (ilmenita) e quartzo em gotas. Com base do diagrama químico-mineralógico Ca±AlIV em função do Si+Na+K (Giret et al., 1980) esses anfibólios são classificados como hornblenda-tschermakita a hornblenda (figura 01A), isto é, pertencentes ao grupo dos anfibólios cálcicos (Ca>1,34) de Leake (1978). As reações texturais observadas em algumas rochas permitem sugerir que o anfibólio e o quartzo em gotas são resultado da transformação do clinopiroxênio, através da reação plagioclásio + clinopiroxênio + granada = granada + anfibólio + plagioclásio + quartzo (gotas).

As granadas apresentam coloração avermelhada e elas são subbédricas a anédricas e atingem comumente 2 a 3 milímetros. Certos cristais mostram grande quantidade de inclusões de quartzo em gotas. Normalmente são encontradas ao lado de biotitas e às vezes, de anfibólios. Eles são, de uma maneira geral, almandinas-grossularias (Al4Si3Gr2O12Si4). Observa-se que certos cristais, situados próximos aos envelopes da anfibólio, podem atingir tamanhos em grossularia mais significativos (Gr2Al4).

As granadas dos granitos a duas micas da SU são química e texturalmente diferentes daquelas da SG (figura 01B). Nas rochas da SU as granadas mostram coloração avermelhada, são normalmente euédricos e atingem cerca de 3 milímetros. Elas são encontradas em cristais isolados ou em agregados de 3 ou 4 cristais e caracterizam, juntamente com a turmalina, os minerais acessórios mais representativos dessa suite. Do ponto de vista químico, elas são caracterizadas como almandinas-espessartitas (Al4Si3Gr2O12Si4), mostrando um enriquecimento significativo em Mn e Fe e um empobrecimento em Ca, quando comparadas às granadas dos tonalito-granodioritos da SG.

CONSIDERAÇÕES GEobarOMÉTRICAS E GEOTERMOMÉTRICAS

Segundo resultados experimentais de Green (1992), o clinopiroxênio desaparece em torno de 875°C a 900°C (anfibólio+quartzo+granada), o que sugere que a formação da paragênese encontrada na SG se deu abaixo dessas temperaturas. Além disso, para se obter uma estimativa aproximada da temperatura de formação desses anfibólios, utilizou-se o geotermômetro desenvolvido por Otten (1984). Esse método se baseia no teor de Ti dos anfibólios que coexistem com a ilmenita. As temperaturas obtidas se situam entre 600°C e 700°C, correspondendo provavelmente à temperaturas de reequilíbrio tardi-magmático.

Em complemento aos dados acima, observa-se nas rochas da SG a presença de almandinas ricas em grossularia. Segundo os trabalhos experimentais de equilíbrio de fases (Green, 1992), as granadas (normalmente almandina-grossularia) associadas às rochas fígeas metalamínicas, com paragênese semelhante àquela da SG, necessitam de uma pressão de cerca de 10 Kbar (900°C e 5 wt % de H2O) para serem estáveis. Esta pressão parece se adequar aos dados geobarométricos obtidos para os anfibólios dessa mesma suite (em torno de 9±1 Kbars).

No que refere à SU, com os dados obtidos até o momento, pode-se constatar que essas rochas foram cristalizadas sob pressões muito maiores que aquelas da SG. Segundo Green (1977), Miller & Stoddart (1981) e Clemmens & Wall (1984), as
granadas ricas em espessartita dos granitos do tipo S podem ser cristalizadas sob pressões inferiores a 4-5 Kbar. Nesta suite ainda não foram obtidos dados geotermométricos precisos.

CONCLUSÕES

Os resultados obtidos a partir de métodos geobarométricos e geotermométricos de anfibólios permitem sugerir que as condições de cristalização dos tonalito-granodioritos da SG se deu a pressões relativamente elevadas (9±1 Kbar) e que as temperaturas foram da ordem de 600 a 700°C. Se considerarmos os dados experimentais de Green (1992), a temperatura de cristalização da granada (alm-gros) em associação com anfibólio e quartzo é da ordem de 850°C. Dessa forma, as temperaturas obtidas (600-700°C) representariam condições físicas tardi-magmáticas. As almandinas ricas em grossularia da SG também sugerem condições de alta pressão (cerca de 10 Kbars, Green, 1992). Tais condições de pressão podem ser atingidas em regiões onde a crosta possui uma espessura de cerca de 35 Km. Segundo Green (1992) a origem dessas rochas estaría ligada a cristalização de magmas do tipo M ou I na interface crosta-manto superior.

Por outro lado, com base na presença de almandina rica em espessartita nos granitos à duas micas da SU sugere-se que esta suite foi intrudida sob pressões relativamente mais baixas (menores que 4-5 Kbar). Esse tipo de granada é caracterizada nos granitos do tipo S (Chappell & White, 1974) e são comumente interpretadas como um mineral residual dentro de um magma derivado da fusão parcial de rochas pelíticas em profundidade moderada (Green, 1976; Clemens & Wall, 1981).

Os dados físicos expostos acima confirmam as observações geoquímicas, permitindo a clara distinção entre a SG e a SU (Nalini Jr. et al., 1995). A primeira apresenta afinidade calcio-alcalina e possui origem profunda (35 Km) e a segunda mostra importante contribuição cristal e tem origem menos profunda (16 Km).

AGRADECIMENTOS

A viabilização deste trabalho foi possível graças ao apoio da Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) e ao auxílio logístico do Departamento de Geologia da Universidade Federal de Ouro Preto e do Departamento de Geoquímica da Escola de Minas de Saint Etienne (França).

REFERÊNCIAS BIBLIOGRÁFICAS

OCORRÊNCIA DE APATITA NA REGIÃO DE GUIRICEMA, MINAS GERAIS

RONALDO MELLO PEREIRA - Departamento de Geologia e Geofísica/UERJ
CIRO ALEXANDRE ÁVILA - Museu Nacional/UFRJ
RUI ALBERTO DOS SANTOS - Departamento de Geologia e Geofísica/UERJ

INTRODUÇÃO

Esse trabalho objetiva registrar e descrever uma ocorrência de apatita (20°59'S e 42°40'W, base cartográfica 1:1.000.000) localizada no Município de Guiricema, sudoeste do estado de Minas Gerais.

A mineralização, descoberta pelo Sr. Antônio Faustino nas terras da Fazenda Bocaina em 1982, teve seus cristas prismáticos hexagonais de apatita com coloração azulada confundidos com águas marinhas. Esta ocorrência foi trabalhada em 1987 por garimpeiros e, posteriormente, em 1992 pelos Srs. Fernando Lacroix e Elias Andrade, que ainda considerando a mineralização como um possível depósito de água marinhas, empreenderam por meios mecanizados a abertura de uma cava de modo a seguir e expor o veio em profundidade.

Com a correta identificação do mineral ali existente, os trabalhos exploratórios foram interrompidos, restando hoje como registro das atividades desenvolvidas, uma pequena cava inunda e os rejeitos resultantes do desmonte da zona mineralizada e de suas rochas ecaixantes.

LOCALIZAÇÃO

A mineralização de apatita encontra-se nas imediações da sede da fazenda Bocaina, situada na localidade denominada de Laranjeiras, Município de Guiricema. O acesso à área é realizado por intermédio da estrada secundária que liga Guiricema ao município de Ervália, passando pelas localidades de Laranjeiras e Condívia. A ocorrência dista cerca de 6 Km de Guiricema, distância esta medida a partir do laticínio da Parimalat, localizado na saída da cidade.

A fazenda Bocaina situa-se no sopé da Serra da Mantiqueira e encontra-se na zona de cabeceira de um pequeno braço do ribeirão Laranjeiras. O relevo da região é montanhoso, com encostas bem íngremes, que às vezes expõem grandes paredões rochosos.

CONTEXTO GEOLÓGICO

Regionalmente a área pode ser incluída no Grupo Paraiba (Costa & Romano, 1976), no Grupo Barbacena (Bonesca & Campos, 1978) ou no Gnaisse Piedade (Machado Filho, 1983), onde os principais tipos litológicos estão representados por gnaisses de alto grau, granulitos e rochas intrusivas graníticas.

Na área estudada foram observados granulitos mesocráticos com granulação variando de média a fina e constituídos por granada, plagioclasio, diopsídio, hornblenda, quartzo, ortoclássio e minerais opacos. A granada ocorre em grande quantidade e apresenta-se associada ao diopsídio e hornblenda. Estes dois últimos minerais apresentam-se, intimamente, associados, pois a hornblenda ocorre bordejando os cristais de diopsídio, substituindo-o nas suas clivagens ou como manchas no núcleo destes. Esta feição aponta para a possibilidade de condições retrogradadas de metamorfismo terem atuado neste litotipo.

Localmente foram observados níveis de rochas ultramáficas de coloração esverdeada e composição piroxenítica encaixados nas rochas granulíticas. Estes níveis são constituídos por hiperstênio e diopsídio, que encontram-se fortemente intemperizados.

Todo este conjunto apresenta-se recortado por dunques e amas pegmatíticas, intensamente caulínizadas. Nesse contexto desenvolveram-se níveis micáceos escuros, que acompanham, a grosso modo, o contato entre os níveis piroxeníticos e as amas pegmatíticas.

MINERALIZAÇÃO

A apatita encontra-se em dois níveis na ocorrência, um veio principal mais possante, com espessura aproximada de 1m, segundo relato do Sr. Lacroix, atualmente não mais observado em virtude da inundação da cava exploratória e um veio secundário, com poucos centímetros de espessura.

O estudo do material proveniente do desmonte do veio permitiu verificar que a mineralogia da ocorrência é bastante simples, sendo constituída basicamente por apatita e vermiculita. Os cristais de apatita são observados inclusos em uma matriz bastante fina, muito dura e de coloração esbranquiçada, que encontra-se fortemente alterada, não permitindo a sua correta identificação.

A apatita ocorre, geralmente, em cristais prismáticos hexagonais, terminados, de coloração azulada e dos mais diversos tamanhos. Foram encontrados no rejeito cristais com até 15cm de comprimento e 7cm de base, sendo que apatitas ainda maiores, com até 50cm de comprimento, foram reportadas pelas pessoas que exploraram a ocorrência.
Algumas das apatitas amostradas apresentam-se constituídas por numerosos grânulos azul pálidos, lembrando um *fabric sacaroidal* típico de recristalização. Inclusões de carbonato e possivelmente gibbsita foram identificadas por microscopia óptica.

Os cristais de apatita de maiores dimensões apresentam em suas faces inúmeras *boxworks* hexagonais de diversos tamanhos, indicando a presença de cristalização secundária de apatita dentro do horizonte mineralizado, possivelmente devido à mobilização do fósforo e do cálcio. Pequenas amígdalas preenchidas com quartzo foram observadas na matriz.

Análises por difração de raios-X efetuada em 6 amostras de apatita, incluindo a do veio principal, do veio secundário e a com *fabric sacaroidal* indicaram tratar-se de fluorapatita.

A vermiculita ocorre em estreita associação com os dois veios mineralizados em apatita e aparece tanto em pequenas pañhetas, quanto em grandes placas com mais de 15cm de tamanho.

DISCUSSÕES

O elevado estado de alteração dos blocos da rocha que compõe o veio principal e a não observação direta do veio, impedem que conclusões referente a gênese da mineralização sejam tecidas. Utilizando-se os dados adquiridos até o presente momento, pode-se indicar que o veio mineralizado deriva de um fluido contendo P e CO₂ que propiciaram a formação dos cristais de apatita e dar inúmeras inclusões de carbonato.

BIBLIOGRAFIA

VARIAÇÃO COMPOSIÇIONAL DOS MN-ANFIBÓLIOS COMO MONITOR DO METAMORFISMO NO MORRO DA MINA, CONSELHEIRO LAFAYETE, MG

F.R.M. PIRES - Departamento de Geologia/UFRJ

O depósito de minério de manganês do Morro da Mina, explorado desde o final do século passado é famoso pela qualidade do minério, e pela variedade mineralógica derivada de processos metamórficos, hidrotermais e intempéreis. A partir do início da década de 70 o outrora protomínério sílice-carbonático (queluzito definido por Derby, 1901; 1908; Hussak, 1905; Hören,1953; Guimarães, 1935; Ebert,1963; Pires, 1983) foi exposto pelos trabalhos de lavra a céu aberto, possibilitando sua amostragem e estudo detalhado.

Rodocrosita, espessartita, Mn cummingtonita, tefroita, rodonita, pyroxmangita, Mn calcita, calcita, kutnohorita, grafita e pirofuma, fases principais derivadas do metamorfismo, foram encontradas nas bancadas mais superficiais (níveis 630 e 590) em protomínério e atual minério, de acordo com definição original e modificações subsequentes. Nas zonas de contacto do corpo com encaixantes e intrusões graníticas foram encontrados gonditos (quarto-espessartita-Mn anfibólio-rodonita) e rochas koduríticas (Fermor, 1909). Em profundidade, as sondagens 7800 X 102A e 8600 X 102 atingiram a rocha queluzítica com consideráveis variações composicionais e gonditos. A presença mais frequente de MnCaa-antíbio, titânita, Mn-flogopita, albita e microclina juntamente com espessartita, rodonita, Mn-calcita, calcita e kutnohorita nesses queluzitos define um grau metamórfico maior em direção ao interior da mina. Sensível redução da quantidade de tefroita, rodocrosita e pirofuma corromperam e acompanham o aumento das condições metamórficas.

Estudos petrológicos envolvendo a estabilidade dos Mn-anfibólios têm sido desenvolvidos em outras regiões (Dasgupta et al., 1988 sob condições metamórficas (fases anfibólio) e processos similares (infiltration e reaction sark) ao Morro da Mina tendo sido demonstrada a coexistência entre tefroita e Mn-calcita ou kutnohorita. Entretanto a coexistência das fases carbonáticas referidas com os anfibólios Mn-cummingtonita e Mn-actinolita encontrada no Morro da Mina ainda não foi documentada. A presença dos Mn-anfibólios foi julgada sem importância (Peters et al., 1974; 1977) como fator de monitoramento do metamorfismo das formações manganésferas, apesar de sua presença ter sido notificada em Buritirama.

Aparentemente a presença dos Mn-anfibólios nas formações manganésferas é governada, além do grau metamórfico (P e T), pela composição do prototípico, após cristalização inicial de espessartita e consumo da Al₂O₃ e pelo aumento da pressão de H₂O e conteúdo de X₅Mn em relação às concentrações de Mg e Ca. Apesar do elevado conteúdo de SiO₂ nos anfibólios sua quantidade relativa parece não influir na cristalização dos anfibólios.

Três conjuntos de carbonatos estão presentes nos queluzitos, destacando-se:
1. Rodocrosita, desde quase puras até tipos mais cálcicos e algumas ferromagnesianas;
2. Kutnohorita, com relativamente larga variação composicional;
3. Calcita e Mn calcita. Coexistentes com a Mn cummingtonita são as rodocrositas e kutnohoritas e algumas calcitas e com a Mn actinolita apenas a calcita e calcitas pobres em Mn.

Para ilustrar as reações metamórficas que exprimem as condições de equilíbrio entre os carbonatos e anfibólio tem-se:

8(C₈H₁₈Mn₃₋₄Mg₂₋₃FeO₃₋₂)CO₃ + 8SiO₂ + H₂O = (M₈₋₁₄Mn₂₋₃Mg₄₋₃FeO₃₋₂)₃SiO₁₀(OH)₃ + MnCO₃ + 7CO₂ [1]

8(C₈H₁₈Mn₃₋₄Mg₂₋₃FeO₃₋₂)CO₃ + 8SiO₂ + H₂O = (M₈₋₁₄Mn₂₋₃Mg₄₋₃FeO₃₋₂)₃SiO₁₀(OH)₃ + CaCO₃ + 7CO₂ [2]

8(C₈H₁₈Mn₃₋₄Mg₂₋₃FeO₃₋₂)CO₃ + 8SiO₂ + H₂O = (M₈₋₁₄Mn₂₋₃Mg₄₋₃FeO₃₋₂)₃SiO₁₀(OH)₃ + (M₈₋₁₄Mn₂₋₃FeO₃₋₂)CO₃ + 7CO₂ [3]

Pode-se deduzir pelas reações e assembléias minerais que a formação de rodocrosita e kutnohorita coexistindo com Mn-cummingtonita é restrita a condições metamórficas de grau mais baixo que a associação de calcita com Mn-actinolita.

As análises de carbonatos e anfibólios foram realizadas pelo autor na microscopia eletrônica da Universidade do Wyoming.

REFERÊNCIAS

Fermor,L.L. (1909) The Manganese Ore Deposits of India, Mem. 37, pt II.

PADRÕES DE TERRAS RARAS DE ALGUMAS FORMAÇÕES FERRÍFERAS ARQUEANAS DO QUADRILÂTERO FERRÍFERO

FREDERICO OZANAM RAPoso - CPRM/BH (O Serviço Geológico do Brasil)
EDUARDO ANTÔNIO LADEIRA - UFMG - MHN

INTRODUÇÃO

A gênese das formações ferríferas bandadas (FFB) do Quadrilátero Ferrífero foi pouco discutida nos primeiros trabalhos geológicos feitos na região. Guimarães (1935) propôs uma gênese a partir do retrabalhamento químico de vulcanitos subaçoosos, atribuindo seu bandamento a processos metamórficos. Dorr et al. (1953) contestaram esta hipótese por falta de dados e, principalmente, porque já começavam a admitir profunda discordância na base da Série Minas, separando a série que, mais tarde, viriam a chamar Série Rio das Velhas. Segundo esses autores, as formações ferríferas dessa série inferior seriam diretamente relacionadas a rochas vulcânicas e distintas das formações ferríferas ou itabiritos da Série Minas, superior, que eram plataformais sem qualquer relacionamento com rochas vulcânicas.

Raposo & Ladeira (1993) sugeriram para os itabiritos da Formação Caeté, Supergrupo Minas, origem a partir de fluidos hidrotermais submarinos com base na distribuição dos elementos terras raras.

Neste trabalho, os presentes autores apresentam padrões de distribuição de elementos terras raras (ETR) em FFBs do Grupo Nova Lima, Supergrupo Rio das Velhas e, com os mesmos critérios, sugerem sua origem a partir de fontes hidrotermais submarinas e deposição sobre fundo oceânico basáltico (MORB), ampliando deduções de Ladeira et al. (1991).

METODOLOGIA

Para representar as FFBs do Grupo Nova Lima, coletaram-se amostras de rochas frescas, evitando-se as zonas de maior alteração hidrotermal, nas minas de ouro de Raposos, São Bento, Cuiabá e em dois afloramentos de FFBs não mineralizadas em Au. nas proximidades da Fazenda Cachoeira, entre Rio Acima e Caeté. Estudos petrográficos permitiram melhor seleção de amostras para análises dos ETRs (tabela 1) que foram normalizados pelo padrão NASC, segundo Haskin et al. (1968).

PETROGRAFIA

As FFBs estudadas têm bandas submilimétricas a milimétricas de quartzo com carbonato, magnetita e alguma clorita e bandas mais ricas em magnetita e/ou carbonatos. Algumas têm clorita em quantidades maiores. Caracterizaram-se, pelo menos, três gerações de quartzo, duas de carbonato e três de sulfeto. A de quartzo primária é limpa, cristais pequenos recristalizados e com junções tríplicas. Os cristais da primeira geração de carbonato aparecem entre os cristais primários de quartzo. São, na maioria, siderita e ankerita euédricas identificadas por teste de coloração e análises por microsonda. A magnetita primária é diminuta e euédrica, em concentrações diferenciadas entre os cristais da fase primária de quartzo, gerando bandamento característico.

O quartzo das gerações secundárias aparece em cristais maiores, com limites irregulares e feições internas de recuperação cristal-plástica, como extinção ondulante, bandas de deformação e mesmo subgrãos. Em geral, constituem vênulas ou fragmentos de vênulas dobradas ou não, entre os cristais da fase primária. Os cristais são maiores nas vênulas menos deformadas.

O carbonato secundário, com composição sempre ankerítica, também em cristais maiores, com cores concêntricas de interferência e anéridicos, muitas vezes aparece em vênulas ao lado dos cristais maiores de quartzo.

Os sulfetos ocorrem em três fases: cristais anéridicos paralelos ao bandamento composicional, grandes cristais euédricos cortando os anéridicos anteriores, ou como vênulas de cristais maiores cortando todas as demais fases.

DISCUSSÃO

sem influência desses fluidos, usando a correlação entre os elementos Co+Cu+Ni e os ETRs.

Apesar do enriquimento secundário em SiO₂ das FFBs e metachertes do Grupo Nova Lima, devido à entrada do quartzo como vênulas na rocha original, as alterações metamórficas e hidrotermais não foram suficientes para modificar a distribuição primária dos ETRs. Com base nos teores dos ETRs, foi possível identificar três tipos de FFBs e metachertes.

O padrão a (figura 1) tem forte anomalia positiva de Eu e comportamento similar ao padrão NASC nos demais elementos, sugerindo forte influência de fluidos hidrotermais submarinos.

O padrão b (figura 1), sugere ambiência muito distal em relação às fontes exalativas e é similar ao padrão das águas oceânicas a profundidades abaixo de 100m (Elderfield & Greaves, 1982).

O terceiro padrão (c, figura 1) difere dos anteriores, sendo pouco citado na literatura geológica internacional e relativamente comum em formações ferreiras arqueanas do Quadrilátero Ferrífero. Tem forte enriquimento em ETRL e anomalias positivas de Eu. O enriquimento em ETRL é tão marcante que reduz, aparentemente, as anomalias de Eu. Talvez este padrão tenha causa distinta dos anteriores. É possível que os fluidos estivessem relacionados a vulcânicos mais diferenciados, ou a um embasamento sílico com componente alcalina.

CONCLUSÕES

1. Apesar das modificações minerais e composicionais pela entrada de quartzo, carbonato e sulfeto como vênulas nas formações ferreiras do Grupo Nova Lima, é possível recuperar parte do ambiente de deposição dessas rochas, com base na distribuição dos elementos terras raras.

2. O tipo a tem fortes anomalias positivas de Eu e distribuições de ETRL e ETRP similares ao NASC. É interpretado como formações ferreiras proximais às fontes exalativas hidrotermais submarinas, depositadas em fundo oceânico basáltico (MORB).

3. O tipo b, com empobrecimento em ETRL e anomalias negativas de Eu, é similar ao padrão das águas oceânicas abaixo de 100m de profundidade. É interpretado como formações ferreiras distais em relação às fontes exalativas hidrotermais submarinas.

4. O tipo c exibe forte enriquimento em ETRL e anomalias positivas de Eu. É interpretado como de formações ferríferas proximais em relação às fontes exalativas hidrotermais, porém com os fluidos provenientes, possivelmente de rochas vulcânicas mais diferenciadas, talvez fêmeicas, ou de embasamento sílico com componente alcalina.

AGRADECIMENTOS

Os autores agradecem à Mineração Morro Velho S.A. e à UNAMGEN pelas facilidades de amostragem em suas minas, à CPRM e ao CNPq - Processos (301100/82-9, 910052/93-0, e 161514/92-8) pelos apoios materiais e financeiros e à UFMG pelo apoio material.

REFERÊNCIAS BIBLIOGRÁFICAS

Tabela 1 - Análises químicas de elementos raras de formações ferrovertes e metachártas do Grupo Nova Lima.

<table>
<thead>
<tr>
<th>ORDEM</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>NºCAM</td>
<td>FR021</td>
<td>FR022</td>
<td>FR023</td>
<td>BH02A</td>
<td>IT02A</td>
<td>IT02E</td>
<td>RMI59A</td>
<td>RMI59B</td>
<td>JS149B</td>
<td>JS149C</td>
</tr>
<tr>
<td>La</td>
<td>2.470</td>
<td>5.474</td>
<td>4.414</td>
<td>4.277</td>
<td>7.480</td>
<td>2.405</td>
<td>8.155</td>
<td>2.394</td>
<td>2.955</td>
<td>7.014</td>
</tr>
<tr>
<td>Nd</td>
<td>1.441</td>
<td>5.365</td>
<td>3.336</td>
<td>3.494</td>
<td>7.455</td>
<td>3.072</td>
<td>2.561</td>
<td>1.060</td>
<td>6.833</td>
<td>5.403</td>
</tr>
<tr>
<td>Sm</td>
<td>0.460</td>
<td>1.512</td>
<td>0.832</td>
<td>0.720</td>
<td>1.320</td>
<td>0.691</td>
<td>0.415</td>
<td>0.240</td>
<td>1.194</td>
<td>1.028</td>
</tr>
<tr>
<td>Eu</td>
<td>0.101</td>
<td>0.688</td>
<td>0.145</td>
<td>0.174</td>
<td>0.251</td>
<td>0.219</td>
<td>0.127</td>
<td>0.096</td>
<td>0.299</td>
<td>0.832</td>
</tr>
<tr>
<td>Gd</td>
<td>0.490</td>
<td>1.445</td>
<td>0.689</td>
<td>0.515</td>
<td>0.678</td>
<td>0.579</td>
<td>0.399</td>
<td>0.261</td>
<td>1.007</td>
<td>0.829</td>
</tr>
<tr>
<td>Dy</td>
<td>0.463</td>
<td>1.367</td>
<td>0.510</td>
<td>0.447</td>
<td>0.497</td>
<td>0.503</td>
<td>0.310</td>
<td>0.250</td>
<td>0.651</td>
<td>0.587</td>
</tr>
<tr>
<td>Ho</td>
<td>0.114</td>
<td>0.263</td>
<td>0.100</td>
<td>0.113</td>
<td>0.105</td>
<td>0.111</td>
<td>0.060</td>
<td>0.050</td>
<td>0.110</td>
<td>0.130</td>
</tr>
<tr>
<td>Er</td>
<td>0.381</td>
<td>0.638</td>
<td>0.307</td>
<td>0.419</td>
<td>0.306</td>
<td>0.345</td>
<td>0.165</td>
<td>0.150</td>
<td>0.270</td>
<td>0.260</td>
</tr>
<tr>
<td>Yb</td>
<td>0.480</td>
<td>0.480</td>
<td>0.340</td>
<td>0.241</td>
<td>0.313</td>
<td>0.280</td>
<td>0.143</td>
<td>0.190</td>
<td>0.268</td>
<td>0.260</td>
</tr>
<tr>
<td>Lu</td>
<td>0.100</td>
<td>0.076</td>
<td>0.079</td>
<td>0.061</td>
<td>0.055</td>
<td>0.055</td>
<td>0.030</td>
<td>0.095</td>
<td>0.048</td>
<td>0.040</td>
</tr>
<tr>
<td>B</td>
<td>1.1</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td>Ce</td>
<td>1.30</td>
</tr>
</tbody>
</table>

Análises por ICP nos laboratórios do GEOSOL.

Figura 1. Varivagramas tipos a, b e c de elementos raras normalizadas pelo padrão NASC, segundo Haskin et al. (1968) de amostras de formações ferrovertes e metachártas do Grupo Nova Lima. Supergroup Rio das Velhas (Amostras conforme tabela 1), M = am. da Mina Passagens de Mearim, R = amostra da Mina de Raposos e SB = média de duas amostras da Mina de São Benito, segundo Grossi Sadi (inf. verbal, 1991).
O COMPLEXO GRANITÓIDE DE FLORESTAL - PARTE MERIDIONAL DO CRÂTON DE SÃO FRANCISCO- PRIMEIROS DADOS PTERÓGRAFICOS E GEOQUÍMICOS

ANTÔNIO WILSON ROMANO - CPMTC/IGC/UFMG
ESSAİD BILAL - Ecole des Mines de Saint-Etienne, França
JOSÉ MARQUES CORREA NEVES - IGC/UFMG
ANDRÉ GIRET - Université Jean Monnet, Saint-Etienne, França
JACQUES MOUTTE - Ecole des Mines de Saint-Etienne, França

CONTEXTO GEOlógICO

O complexo tem a forma de um elipsóide de aproximadamente 40km de eixo maior disposto segundo uma direção média E-W. Ele está encaixado, ao norte e oeste, por gnaisses e migmatitos, e ao sul pelo cinturão vulcano-sedimentar do Supergrupo Rio das Velhas de idade arqueana (Machado et al. 1992). Este último é constituído por rochas fracamente metamórficas e fortemente estruturadas segundo a direção geral NW-SE por um sistema de falhas de rasgamento (Romano et al. 1991). Suas rochas assumem então uma foliação regional milonítica de forte mergulho. As rochas graníticas não são afetadas pela foliação das encaixantes, observando-se somente uma foliação de borda devida ao fluxo magmática, sendo esta entretanto pouco importante se comparada à área total de afloramento. Contudo, destaca-se o sistema rúptil posterior, estruturado sob a forma de um denso enxame de diques básicos intrudido segundo as direções NW-SE e NE-SW, e datado do Paleo ao Mesoproterozóico (Teixeira et al. 1988).

Os dados geocronológicos são ainda pouco expressivos e interessam somente o granodiorito de Caio Martins, situado na parte leste do complexo, que é datado de 2,59(±0,019 -0.018)Ga pelo método U-Pb em zircões discordantes (Romano et al. 1991).

PETROGRAFIA

Quatro tipos principais de granítóides foram distinguidos pelo estudo petrográfico e pela análise modal:

-granodiorito Caio Martins, caracterizando por uma estrutura isotropa a grão grosseiro, constituído essencialmente por biotita, albita-oligoclássio, microclina, quartzo, tendo a tititana e o zircão como minerais acessórios; é recortado por veios centimétricos de pegmatitos a quartz e feldspato potássico,

-granito Padre João, a grão grosseiro e isótropo, constituído essencialmente por quartzo, biotita quase que inteiramente cloritizada, oligoclássio e microclina intergranular; é recortado por veios aplícos portadores de granada e está profundamente alterado por intemperismo,

-granito Lagoinha, a grão fino e estrutura isótopa, composto por biotita, muscovita e microclina; a tititana é um mineral acessório importante; fenocristais de oligoclássio normalmente zonados caracterizam a textura porfiroíde de algumas porções do corpo; seus afloramentos estão geralmente preservados intemperismo,

-granito Serra dos Tavares, a grão médio-grosseiro e igualmente constituído por duas micas, estando a biotita intensamente cloritizada; contém microclina e albita-oligoclássio por vezes esbédrico e zonado; apresenta uma alteração secundária pronunciada com formação de veios finos de epidoto e películas de clorita ao longo das diálises e fraturas; alguns afloramentos, principalmente aqueles das zonas de borda, contêm granada (Alm0.492Esp0.420Gr0.065 Př0.023); é o que apresenta foliação de borda mais conspícuas e é recortado por veios aplícos e pegmatíticos de espessura centimétrica.

GEOQUÍMICA

Os granítóides do complexo de Florestal são metaluminosos a fracamente peraluminosos. A saturação em alumina é da ordem de 1,1 em média. Estes granítóides atingem sua saturação em alumina tardiamente em torno de 0,8% de MgO, comparável a certos granítóides subalcalinos. O índice de agrapito (Na+K/Al) está compreendido entre 0,69 e 0,88. A soma dos metais alcalinos (Na2O+K2O) aumenta de 7% a 9%, em correlação com o aumento da sílica. A correlação negativa de Al2O3, Na2O e CaO em relação à sílica, reflete o fracionamento do plagioclássio. Em troca, o aumento dos teores em K2O, implica em um fracionamento mais moderado do feldspato potássico em relação à biotita. As relações Na/K e Na/Ca são intermediárias entre aquelas das suites cálcio-alcálinas.
e trondjemíticas. Entretanto, a relação MgO/TiO₂ é típica das suites graníticas cálcio-alaquínas.

A relação Fe/(Fe+Mg) aumenta de 0,70 a 0,86. Os fracos teores de TiO₂ (<0,5%), MgO (<1%), Sc (<7ppm), Co (<9ppm), V (<14ppm), Cu (<10ppm), Nb (<12ppm) e Zn (<80ppm) indicam um importante fracionamento dos minerais ferromagnesianos e dos óxidos de Fe e Ti nos estágios iniciais.

As relações Sr/Rb, Ba/Rb, Ba/Sr, Zn/MgO e Sc/MgO mostram que os outros minerais ferromagnesianos, além da biotita, não intervêm provavelmente na evolução dos granodioritos aos apitos e confirmam o fracionamento da biotita e do plagioclássio nos granodioritos e granitos. Em troca, o fracionamento do feldspato potássico acontece entre os granitos e os apitos.

Os espectros dos granítoides normalizados aos condritos (Thompson et al. 1983) mostram um enriquecimento relativo em Th, Ce e Sm em relação ao Nb e Zr. Eles são comparáveis àqueles das suites cálcio-alaquínas de arco de ilha.

CONCLUSÃO

Os granítoides do complexo de Florestal formam um grupo petrográfica e geoquimicamente homogêneo. Eles mostram um caráter intermediário entre os granitos, cálcio-alaquínos e trondjemíticos.

Entretanto, o espectro desses granítoides normalizados aos condritos, assim que a relação MgO/TiO₂, indicam um caráter cálcio-alaquínho de arco de ilha.

REFERÊNCIAS BIBLIOGRÁFICAS

THE IBIRITÉ GABBRO AND THE BORRACHUDO GRANITE - THE RIFT-RELATED MAGMATISM OF MESOPROTEROZOIC AGE IN THE QUADRILÁTERO FERRÍFERO (MG)

ADALENE MOREIRA SILVA - IG/UNB/Brasília
FARID CHEMALE JR. - IG/UFRGS Porto Alegre
LARRY HEAMAN - Department of Geology - University of Alberta, Canada

The occurrence of mafic igneous rocks and acid plutonic rocks intruding the Archaean to Mesoproterozoic crustal units of the Quadrilátero Ferrífero is very common. Some of these magmatic rocks are associated with the syn-rift magmatism of the Espinhaço Range, situated to the north of the Quadrilátero Ferrífero (e.g. Silve et al., 1991. Dossin et al., in prep.). In the present paper we will discuss field geology, geochemistry and geochronology of the Ibirité Gabbro and the Borrachudo Granite, which are probable related to the rifting process of the Mesoproterozoic Espinhaço Group in the Quadrilátero Ferrífero region.

The Ibirité Gabbro occurs as hundred meter large body in the western portion of the Quadrilátero Ferrífero, where the Paleoproterozoic structures were less deformed during the Brasiliano collisional event than in the eastern portion (Chemale Jr. et al., 1991). This gabbro is mostly undeformed with preserved igneous texture, but foliated along the borders. It belongs to the undeformed Mesoproterozoic basic dykes and gabbroic bodies which cut units of the granite-gneissic terrain and the Minas Supergroup near the localities of Pará Minas and Ibirité. The gabbro has an intergranular texture (locally ophiitic) with lath-shaped crystals of plagioclase (An_{40-50}) and subhedral to anhedral augite grains as major components. Ilmenite occurs as accessory. The chemical analyses of the pyroxene show that its composition varies from intermediate pigeonite on to the field of subcalcic augites. Plotting of pyroxene data in the system CaMgSiO_3-CaFeSiO_3-MgSiO_3-FeSiO_3 with several combinations of temperature at a 1 atm pressure (Lindsay, 1983) yields temperature interval of 1000° to 1220° C. The chemical signature of the Ibirité Gabbro is sub alkaline, of tholeiitic fission with prominent enrichment of iron. The distribution pattern of rare earth elements (REE) normalized to chondrite shows enrichment in light REE. The heavy REE appear to be little enriched. The variations in incompatible trace elements suggest a magmatic evolution from a heterogeneous source. The chemical characteristics of studied samples point to an affinity with recent basalts of continental intraplate. Two medium-grained gabbro samples were processed for U-Pb dating at Royal Ontario Museum using crushing and mineral separation techniques. Two baddeleye smaller fractions were obtained. The U-Pb analyses yields an upper intercept age of 1714 ± 5 Ma, interpreted as the best estimate for the time of gabbro emplacement while the lower intercept of the 618 ± 3 Ma is interpreted as the time of the gabbro deformation.

The Borrachudo Granite is part of stocks and batholiths alkaline granitic bodies which intrude the granite-gneissic terrains of the Quadrilátero Ferrífero (Chemale Jr., 1987). The Borrachudo granite, situated close to Itabira (MG), displays a mylonitic texture because, in contrast to the Ibirité Gabbro, it is exposed in the eastern part of the QF. In this portion the Archaean to Proterozoic rocks have been strongly affected by the thrusting tectonics of Brasiliano age (Chemale Jr. et al., 1991). Its major mineralogical components are quartz and perthite. As minor components and accessory there are plagioclase, microcline, biotite, fluorite, apatite and zircon. The biotites marked the stretching mineral lineation oriented at 90°. Feldspar porphyroclasts show subgrain formation and perthite presents K-rich and Na-rich phases with irregular distribution due to deformational processes (Chemale Jr., 1987). Saussuritization, kaolinization, and chloritization are common secondary alteration. In spite of deformation and hydrothermal alteration, these granitic rocks display a relative homogeneous chemical signature (Chemale Jr., 1987). They are peraluminous with high Y+La-Lu values and a strong negative Eu anomaly. Another characteristic feature of these granites is their enrichment in Nb, Th and Zr. These features characterize the Borrachudo Granite as belonging to a over-saturated alkaline to peralkaline association, formed due to melting of lower crust (Chemale Jr., 1987). A Pb-Pb zircon age of ca. 1.7 Ga for the Borrachudo granitic rocks in Cuanhães (MG) (Dossin, 1993) and similar geochemical pattern between these rocks and the 1.7 Ga old, volcanic acid rocks of the Espinhaço Group (Dossin, in prep.) are key information to correlate the acid and basic magmatic activities.

The set of the data of the Ibirité Gabbro shows that these rocks may correspond to the first basic pulse which cuts through the Paleoproterozoic rocks in the QF region. On the other hand, the presence of acid alkaline magmatism presenting the same chronostratigraphic relations as those of the basic rocks point to a bimodal magmatism. Both are
connected to the extensional event which generated the Espinhaço rift at 1.7 Ga, formed from mantle source (basic magmatism) and lower crust source (acid magmatism).

REFERENCES

ASPECTOS DIAGENÉTICOS DAS ROCHAS DO MEMBRO PONTE ALTA, FORMAÇÃO MARILIA, NO TRIÂNGULO MINEIRO - MG

JÚLIA MARIA DE PAULA ALVES - Mestranda DEGEO/EM/UFOP
NEWTON SOUZA GOMES - DEGEO/EM/UFOP

I. INTRODUÇÃO

II. PETROGRAFIA

As rochas do Membro Ponte Alta exibem um arcabouço representado basicamente por quartzo (70%), feldspato (7% - plagioclásio 0,2% e feldspato potássico 6,8%), fragmentos liticos, que compreendem quartzozitos, xistos, arenitos, granitos e intraclastos (18%), minerais acessórios representados por granada (almandina e melanita), epidoto, leucoxênio, turmalina, zircão, moscovita, anfibolito, monzita, ilmenita, periowskit, hollandita,apatita, titanita e opacos (5%) e traços de bioclastos representados por carapaças quebradas de ostracodes e restos de caules de vegetais.

III. ASPECTOS DIAGENÉTICOS

A. Eodiagênese

A.1. Argila Meccanicamente Infiltrada
Verifica-se apenas alguns pequenos corpos, possivelmente lentes, contendo argila infiltrada. A morfologia mais comumente encontrada ocorre na forma de cutículas e agregados compactos de ilita e interestratificados ilita-esmectita. Provavelmente, esta infiltração ocorreu em diversos pontos da área estudada, porém a não preservação das argilas pode se dever ao intenso retraíimento dos sedimentos pelas enchurradas episódicas. Em geral, esta fase inibe o desenvolvimento de fases diagenéticas posteriores.

A.2. Calcretes
As feições comumente encontradas são mosquetamentos geralmente produzidos por estruturas nodulares brezadadas e pisolíticas. O mosquetamento é ressaltado pela lixiviação superficial ocasionada por águas meteorizas e assume, localmente, aspecto brechoide em função da angulosidade acentuada das manchas (Suguio et al. 1975). As estruturas microscópicas verificadas em secções delgadas incluem drusas, pisolitos e calcédonia com halos de calcita.

A.3. Silcretes
Os silcretes ocorrem na forma de calcédonia, sílex e opala, que chegam a substituir grãos do arcabouço e nódulos de calcrete. Em geral, exibem drusas de quartzo, cujos cristais chegam a atingir cerca de até 3cm de comprimento.

A.4. Atapulga
A atapulgita ocorre na forma de níveis extensos, em geral fibrosos, e se concentra principalmente na base e no topo da unidade estudada. Verifica-se uma tendência na atapulgita se transformar em esmectita. Isto pode ser explicado pela presença de dolomita eodiagênética, que seria originada pela incorporação, à calcita, de cátions Mg++ liberados nesta transformação. A nível da microescala, esta transformação é observada em zonas de fratura, segundo análises de MEV e EDS. A reação é a seguinte:

$$3.43 \text{ ATAP} + 34.13 \text{ H}_2\text{O} (l) + 17.9 \text{ H}^+ (aq.) \rightarrow \text{ESMEC.} + 1.3 \text{ Fe(OH)}_3 (am.) + 19.64 \text{ H}_2\text{SiO}_4 (aq.)$$
A.5. Sepiolita
Sua presença é observada principalmente com auxílio de difratogramas de raios-x. Segundo Goudie (1973), a escassez de Mg impede a formação de sepiolita, que geralmente ocorre associada a atapulga e dolomita. O Mg responsável pela presença de dolomita não foi suficiente para que fosse formada sepiolita em maior quantidade.

A.6. Dolomita
A ocorrência de dolomita diagênese parece ser bastante localizada. Os cristais ocorrem na forma de romboedros parcialmente substituídos por calcita, caracterizando o processo de “dedolomitização”, e, localmente, se apresentam zonados.

B. MESODIAGÊNESE
B.1. Calcita
Nesta fase, a calcita ocorre na forma de mosaico grosso ou grandes cristais poiquilotôpicos, geralmente preenchendo drusas, poros remanescentes e fraturas tardias. Quando observada sob catodoluminescência exibe luminescência baixa, porém mais forte se comparada à cimentação de calcita no calcrete.

B.2. Barita
O cimento de barita no Membro Ponte Alta ocorre na forma de agregados radiais a nível de microescala e, em amostras de mão, preenchendo drusas juntamente com a calcita. Segundo Suguo et al. (1975), a principal fonte de Ba seria os basaltos da Formação Serra Geral. Sabe-se, entretanto, que o Ba é um elemento de baixa mobilidade. Sugerir-se-ia, então, que a fonte mais provável para este elemento seria os feldspatos potássicos que sofreram intensa corrosão pela calcita, nesta unidade.

C. TELODIAGÊNESE
C.1. Dedolomitização
No Membro Ponte Alta, a dedolomitização ocorre, geralmente, a partir do núcleo dos cristais de dolomita, embora alguns cristais apresentem bordas levemente corroídas por calcita. A dedolomitização ocorre em ambientes geralmente restritos, onde predominam a ausência de calcita magnesiana e atapulga, fato este que está, provavelmente, relacionado à disponibilidade de Mg** no sistema.

IV. CONCLUSÃO
As rochas do Membro Ponte Alta apresentam um arcabouço composto basicamente por quartzo (70%), feldspato (7%), fragmentos líticos (18%) e minerais acessórios (5%).

A história diagênese desta unidade pode ser descrita através da ocorrência de argila mecanicamente infiltrada, calcretas, silcretas, atapulga, sepiolita e dolomita, no estágio da codiagênese, calcita e barita, na mesodiagênese e dedolomitização ou calcitização de dolomita, no estágio telodiagenético. A cimentação carbonática na formação de calcretas é volumetricamente maior e mais intensa que as demais fases. Esta fase cimentante contribuiu significativamente para a formação das demais, principalmente na corrosão de sílicos com liberação de sílica responsável pela formação dos silcretas e corrosão de feldspato potássico com liberação de Ba para a formação da barita.

AGRADECIMENTOS
Os autores gostariam de expressar sinceros e indeléveis agradecimentos à FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais pelo apoio financeiro (Processo CEX/92) à realização deste trabalho e ao geólogo Bruno Fernando Riffel pelas determinações no microscópio eletrônico de varredura nas dependências da CBMM - Companhia Brasileira de Metalurgia e Mineração.

V. BIBLIOGRAFIA
EVIDÊNCIAS DE DISSOLUÇÃO POR ÁCIDO SULFÚRICO NA ESPELEOGÊNESE NO GRUPO UNA, BAHIA

AUGUSTO AULER - Gr. Bambuí de Pesquisas Espeleológicas, CP. 488, 30161-970, BH/MG

INTRODUÇÃO

Análises hidroquímicas, mineralógicas e espeleomorfológicas apontam para uma importante contribuição de soluções ricas em ácido sulfúrico na dissolução de carbonatos e geração do relevo cársico do Grupo Una, estado da Bahia.

Um relevo cársico bem desenvolvido ocorre nesta região, incluindo algumas das mais longas cavernas conhecidas na América do Sul. Esses trabalhos espeleológicos e geológicos abrangem principalmente a região a noroeste de Campo Formoso (localidade de Laje) e a área imediatamente ao sul de Iraquara.

DISSOLUÇÃO DE CARBONATOS

O ácido carbônico, devido à disponibilidade global de CO₂ na atmosfera e solo, é aceito como o agente primordial na dissolução de carbonatos, sendo responsável pela grande maioria dos processos químicos associados à geração dos relevos cársicos. A reação geral pode ser sintetizada como:

\[\text{CaCO}_3 + \text{H}_2\text{O} + \text{CO}_2 = 2\text{HCO}_3^- + \text{Ca}^{2+} \] (Drew, 1985).

\[2\text{H}^+ + \text{SO}_4^{2-} + \text{CaCO}_3 = \text{CaSO}_4 + 2\text{H}_2\text{O} + \text{CO}_2 \] (White, 1988).

GEOMORFOLOGIA, HIDROLOGIA E DEPÓSITOS QUÍMICOS

Ainda que pouco conhecido do ponto de vista cársico, o contexto carbonático do Grupo Una possui um expressivo número de sistemas espeleológicos. Dentre as 15 mais longas cavernas mapeadas no país, 5 se desenvolvem nesta sequência, incluindo a mais extensa caverna identificada no Hemisfério Sul, a Toca da Boa Vista, com 64 km de galerias exploradas (fig. 1). Esta significativa ocorrência de sistemas de drenagem subterrâneos atesta a importância dos processos geradores da porosidade secundária nestes carbonatos.

A hidroquímica dos aquíferos cársicos do Grupo Una evidencia a ocorrência regional de teores significativos de áions sulfato, acima do encontrado em terrenos cársicos típicos, onde predominantemente relacionados ao sistema H₂O-CO₂-CaCO₃. Uma síntese de algumas destas análises químicas (tabela 1), demonstra que o ácido sulfúrico é um componente importante no contexto da dissolução dos carbonatos.

Análise química de depósitos secundários nas cavernas da região de Campo Formoso mostram uma mineralogia relacionada à precipitação por águas saturadas em sulfatos. Amplas áreas das paredes e teto das galerias subterrâneas são recobertas por depósitos de epsomita (MgSO₄·7H₂O), sob forma de crostas moldadas nos contornos e reentrâncias das galerias, depositadas durante uma fase de alagamento. Outros depósitos químicos de sulfatos, como flores de gipsita e estalactites de bassanita também foram identificados. Sedimentos hipogênicos excepcionalmente ricos em sulfatos foram observados em diversas cavernas, como na Gruta da Torrinha (Iraquara), e mesmo em cavernas desenvolvidas em litologias carbonáticas da Formação Caboclo, como o Buraco do Possidônio e Gruta do Cristal 1 (Morro do Chapéu).

A expansão e ruptura de planos de fraqueza dos carbonatos, devido à precipitação de cristais de sulfatos por águas de percolação vadas, é importante fator causador de afastamentos de blocos em algumas
cavernas da região ao sul de Iraquara. Na Gruta do Talhão, diversos abatimentos recentes podem ser creditados a este processo. No Buraco da Santa, as crostas de sulfatos chegam a atingir até 10 cm de espessura. Este mecanismo *sui generis* pode influir na evolução do cavernamento na zona vadasa, favorecendo o surgimento de dolinas de colapso na região.

CONCLUSÕES

O alto teor em sulfatos detectados em águas freátricas e vadasas associadas ao Grupo Una, aliado à presença de uma mineralogia correlata nos condutos subterrâneos, atestam para a importância do ácido sulfúrico nos processos de dissolução, precipitação e, a nível local, abatimento relacionados à evolução do relevo cársico na região centro-norte da Bahia. Conjuntamente com os processos do ciclo do ácido carbônico, o ácido sulfúrico é responsável pelo desenvolvimento da porosidade secundária nos carbonatos e pela morfogenese de uma das mais importantes áreas cársicas do país.

AGRADECIMENTOS

Aos companheiros do Grupo Bambuí de Pesquisas Espeleológicas pelo exaustivo mapeamento de cerca de 80 km de condutos subterrâneos na região e pelo auxílio nos trabalhos de campo. Ao Departamento de Geologia da UFOP, através de André Danderfer, pelas difrações de raio-X e a Murilo Valle pelo auxílio na bibliografia.

REFERÊNCIAS BIBLIOGRÁFICAS

Fig. 1 - Planta baixa da Toca da Boa Vista. Caverna que apresenta um padrão "rasform spargenwerk", mostrando a linha central de desenvolvimento de 64 km de galerias subterrâneas. Mapeamento pelo Grupo Bambuí de Pesquisas Espeleológicas (1987-1995)

<table>
<thead>
<tr>
<th>n</th>
<th>HCO₃⁻</th>
<th>SO₄²⁻</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>234</td>
<td>359,5</td>
<td>142,8</td>
<td>Guerra (1986)</td>
</tr>
<tr>
<td>354</td>
<td>189,4</td>
<td>119,0</td>
<td>Worthington (1991)</td>
</tr>
</tbody>
</table>
ESTRATIGRAFIA DE ROCHAS MESOZÔICAS E CENOZÔICAS (?) DA PORÇÃO NORDESTE DA BACIA DO PARANÁ, REGIÃO DO DISTRITO DE PONTE ALTA, UBERABA-MG

EDÉSIO MIRANDA BARBOSA - DEEGEO/EM/UFOP (Mestrando)
RICARDO PINHO LARA - DEEGEO/EM/UFOP (Mestrando)

INTRODUÇÃO

A partir de mapeamento geológico realizado por Lara(1992)e Barbosa(1993), em escala 1:25.000 nas porções setentrional e meridional do distrito de Ponte Alta, município de Uberaba -MG, pode-se individualizar, caracterizar e empilhar, unidades litoestratigráficas do Jurássico a, possivelmente, Cenozóico, na borda nordeste da Bacia do Paraná.

GEOLOGIA REGIONAL

A área mapeada está inserida no extremo nordeste da Bacia do Paraná, sendo esta uma bacia intracratônica, preenchida por sedimentos e rochas vulcânicas, cujas idades variam do Silúrico ao Terciário. No Cretáceo houve intenso tectonismo nesta região, o que causou movimentos ascensionais, os quais, por sua vez, geraram uma feição subelítica denominada de “Soerguimento do Alto do Paraíba” por Hasui et al.(1975). Esta feição constitui marco divisor das bacias do Paraná, a oeste e São Francisco, a leste, a partir do Cretáceo.

ESTRATIGRAFIA LOCAL

Sobre o embasamento de idade Pré-Cambriana, constituído de gnaisses e rochas do Grupo Araxá (como xistos e quartzitos), foram depositadas as unidades a seguir relacionadas (da base para o topo):

Grupo São Bento

Grupo São Bento é dividido em Formação Botucatu, inferior e Formação Serra Geral, superior.

A Formação Botucatu, que ocorre na região entre 850 e 890 m. de altitude, intercala-se com a Formação Serra Geral em dois horizontes distintos, medindo até 15m. de espessura. Aquela formação constitui-se de arenitos médios, cinza-avermelhados, compostos de quartzo (preponderantemente), microclina, fragmentos de rochas vulcânicas e raros minerais pesados como magnetita (Lara, 1992).

Apesar de não ter havido estudo detalhado sobre a área fonte de tais sedimentos descarta-se a possibilidade destes originarem-se de material desagregado do “Alto do Paraíba”, por ter sido, este, gerado em idade posterior. As estruturas sedimentares mais frequentes nesta formação são as estratificações cruzadas tabulares, medindo de 10cm, a 2m, de altura e de 50cm. a 5m. de extensão, além destas há ainda estratificações cruzadas acanaladas, às vezes, deformadas. De acordo com Barcelos (1984 apud Lara 1992), presume-se um ambiente cólico para esta formação baseado em evidências como a alta maturidade mineralógica, a ausência de matriz argilosa e também de horizontes com conglomerados e a ocorrência de laminações frontais com mergulho acentuado (20 a 30º).

Em relação à idade da Formação Botucatu, RADAMBRASIL (1983 apud Lara 1992) admite que esta unidade seja do Triásico Superior a Jurássico, baseado em fósseis de invertebrados.

A Formação Serra Geral ocorre sobre o embasamento (Fulfaro & Barcelos 1991 apud Barbosa 1993) ou é intercalada pela Formação Botucatu. Constitui-se de basaltos, que devido a sua diferenciação, além da intercalação dos arenitos Botucatu, podem ser interpretados como resultado de sucessivos derrames vulcânicos. Os basaltos possuem cor preta a cinza, matriz afamítica e, em alguns horizontes apresentam amígdalas e vesículas, às vezes, preenchidas parcial ou totalmente por calcita, quartzo, calcédonia, zeólitas e montmorilonitas verdes. Na área em estudo foi diferenciado cinco níveis com espessuras de 10 a 50cm., intercalados pelos arenitos Botucatu, como citado anteriormente.

Grupo Bauru

Grupo Bauru é dividido da base para o topo em, Formação Uberaba e Formação Marília.

A Formação Uberaba, situada entre 850 a 915m. de altitude, faz contato abrupto com a Formação Serra Geral, o qual pode ser observado em afloramento situado na cidade de Uberaba. Aquela unidade constitui-se de arenito médio, esverdeado, com grande contribuição de material vulcânico, além de seixos dispersos de quartzo, quartzo e basaltos. Localmente pode-se encontrar alguns seixos orientados segundo planos de estratificações cruzadas acanaladas.

Devido à escassez dos afloramentos, não foi possível realizar medidas detalhadas de, por exemplo, espessura e paleocorrentes.

O ambiente de sedimentação em que foi depositada a Formação Uberaba, é o fluvial tipo “braided”,...

A Formação Marília, de idade Senoniana, segundo Soares et al. (1980 apud Etchebehere 1988) foi subdividida, na área enfocada, em Membro Ponte Alta (inferior) e Membro Serra da Galga (superior):

- **Membro Ponte Alta** - Abrange as cotas altimétricas de 920 a 960 m, e é constituído de arenitos congglomerados e conglomerações com intensa cimentação carbonática (Alves 1995, informação verbal). Os níveis mais congglomerados apresentam seixos de quartzo hialino e leitoso, quartzoíte, sfex e/ou calcedónia e ainda basalto (Formação Serra Geral). Esta unidade faz contato abrupto, erosivo, com a unidade sotoposta (Formação Uberaba). Este contato também foi observado em ponto localizado fora dos limites da área mapeada.

As estruturas sedimentares presentes são estratificações cruzadas e preenchimento de canais, que unidas aos dados petrológicos, indicam ambiente de “playa-lake”, situado próximo à porção distal de leques aluviais.

- **Membro Serra da Galga** - Esta unidade mostra contato abrupto com o Membro Ponte Alta e é constituída de arenito a arenito congglomerado e conglomerações, com seixos de quartzo, quartzoíte e basalto (Formação Serra Geral) assumindo, às vezes, formas de ventifacios (Barbosa & Castro 1993a). Nestes níveis foram encontrados grandes ossadas de fósseis de vertebrados. Em alguns locais, ocorre variação lateral destas rochas para “calcários impuros” caracterizados como calcrites, principalmente próximo ao contato com o Membro Ponte Alta.

O ambiente de sedimentação em que foi depositada tal unidade é o de leque aluvial, como atestam, principalmente, grandes sigmóides observadas no nível mais grossero (arenito congglomerado e conglomeração) e fluvial meandrandente, nas porções mais finas (arenito fino a médio), onde foram observadas superfícies inclinadas de baixo ângulo, sugerindo deposição por acréscimo lateral.

Sobre o Membro Serra da Galga, mediante contato gradacional e em níveis altimétricos entre 980 e 1010 m., ocorre unidade estratigráfica constituída de arenitos finos, siltitos e argilitos avermelhados, cuja geometria é lenticular, apresentando também, superfícies inclinadas de até 13°. Através de correlação com outras unidades descritas em regiões vizinhas (Barbosa & Castro 1993b), admite-se uma possível idade cenozóica para tal unidade.

CONCLUSÕES

A partir de seções estratigráficas realizadas no distrito de Ponte Alta (Uberaba-MG), pode-se individualizar, no mínimo, duas unidades ainda não descritas detalhadamente na região do Triângulo Mineiro, a saber: 1) A unidade inferior (Formação Botucatu) de idade Jurássica Superior a Cretácico, que se intercala aos derrames de basaltos da Formação Serra Geral na região em apreço, sugerindo contemporaneidade com os basaltos; 2) A unidade de topo, possivelmente de idade cenozóica, constituída de argilitos e arenitos lenticulares ainda não formalizada devido a falta de dados precisos para classificá-la à luz do Código Brasileiro de Nomenclatura Estratigráfica.

REFERÊNCIAS BIBLIOGRÁFICAS

NOVAS OCORRÊNCIAS DE ESTRUTURAS ESTROMATOLÍTICAS NAS ROCHAS CARBONÁTICAS DA FORMAÇÃO GANDARELA, QUADRILÁTERO FERRÍFERO, MINAS GERAIS

LUIZ CARLOS BERTOLINO - Departamento de Geologia/UFRJ
FERNANDO R. M. PIRES - Departamento de Geologia/UFRJ

INTRODUÇÃO

O estudo das estruturas estromatolíticas presentes nas rochas carbonáticas do Supergrupo Minas é particularmente importante para o entendimento do ambiente deposicional desta seqüência. A análise das estruturas em conjunto com as variações texturais e de coloração da rocha são fatores determinantes na interpretação das condições paleoambientais.

No Supergrupo Minas, as rochas carbonáticas estão inseridas no intervalo de transição entre as rochas de origem química do Grupo Itabira e as rochas preferencialmente clásticas do Grupo Piracicaba, variando a espessura, textura e, principalmente, a coloração. As ocorrências mais expressivas encontram-se nos sinclinais Gandarela, Dom Bosco, Moeda e na porção central da serra do Curral.

As rochas carbonáticas concentram-se principalmente nas formações Gandarela (Grupo Itabira) e Fecho do Funil (Grupo Piracicaba). Composicionalmente as rochas carbonáticas do Supergrupo Minas são formadas basicamente por dolomitos de granulometria fina a média, coloração variando entre vermelho, cinza e branco, de composição química e mineralógica pouco variada. Os dolomitos dispõem-se em camadas lenticiformes, com dimensões variadas e ocorrem associadas a camadas de itabiritos dolomíticos e silicossos, sericita-clorita-xistos, filitos dolomíticos e quartzozitos.

ESTROMATÓLITOS NO QUADRILÁTERO FERRÍFERO

As primeiras ocorrências de estruturas estromatolíticas no Quadrilátero Ferrífero foram descritas por Dardenne & Campos Neto (1975) e por Cassedanne & Cassedanne (1976) na pedreira do Cumbi (Grupo Piracicaba), posteriormente estas estruturas foram reclassificadas por Pinto (1984).

Souza & Müller (1984), na região do sinclinal Gandarela relatam a ocorrência de estromatólitos nas rochas carbonáticas da Formação Gandarela.

A associação entre algas e bactérias provavelmente desempenharam importante papel na sedimentação carbonática do Supergrupo Minas. Grande parte das estruturas geradas a partir desta associação foram destruídas ou mascaradas durante as diferentes fases de deformação e metamorfose que atuaram na região, dificultando o seu reconhecimento tanto em campo como em laboratório. A diagênese e o processo de dolomitização também contribuíram para a destruição destas estruturas.

Novas ocorrências de estruturas estromatolíticas associadas as rochas carbonáticas da Formação Gandarela foram descritas na porção oeste do sinclinal Dom Bosco, próximo a Miguel Burnier, nas pedreiras Rodeio de Baixo e Campina. (Bertolino, 1994).

A pedreira Rodeio de Baixo apresenta estruturas estromatolíticas associadas a dolomito homogêneo de coloração bege a levemente avermelhado, posicionados próximo ao topo da seqüência carbonática. As estruturas destacam-se pela alternância de láminas claras e escuras de dolomito fino, com aproximadamente 3 milímetros de espessura, sendo planares ou levemente onduladas e unidas lateralmente.

Na pedreira Campina as estruturas estromatolíticas estão restritas a um pequeno nível próximo a base da seqüência carbonática e estão associadas a dolomito mação de coloração clara a levemente acinzentada.

As estruturas estromatolíticas das pedreiras Rodeio de Baixo e Campina morfologicamente são classificadas como estromatolitos estafariformes ou esteiras algálicas. Segundo a classificação proposta por Logan et al. (1964), essas estruturas são do tipo LLH.

CONCLUSÕES

As características litológicas e a grande semelhança morfológica dos estromatolitos estafariformes das pedreiras Rodeio de Baixo e Campina, demonstram fortes evidências de que as rochas carbonáticas dessas duas localidades são contemporâneas e foram depositadas em ambiente marinho raso sobre fundo relativamente plano.

BIBLIOGRAFIA

GEOLOGIA DOS TURBIDITOS GLACIO-LACUSTRES DA REGIÃO DE URUCUÍA - MG

JOSÉ ELOI GUIMARÃES CAMPOS - IG/GRM/UNB
MARCEL AUGUSTE DARDELINE - IG/GRM/UNB

INTRODUÇÃO

A região entre as cidades de Urucuí e São Francisco no noroeste de Minas Gerais, está situada na porção centro-este do Cráton do São Francisco (Fig. 1). A geologia da área compreende a unidade de topo do Grupo Bambuí - Formação Três Marias (Neo-proterozóico) e sua cobertura fanerozóica, constituída pelas três sequências sedimentares conhecidas na Bacia Sanfranciscana: Grupo Santa Fé (Neo-paleozóico), Formação Areado (Cretáceo Inferior) e Formação Urucuía (Cretáceo Superior).

Em trabalhos anteriores (Lopes, 1991), os sedimentos do Grupo Santa Fé foram equivocadamente relacionados à Formação Três Marias e/ou a Formação Areado.

Do ponto de vista sedimentológico os Membros Lavado e Brejo do Arroz apresentam variação faciologicamente quando comparados à sua área tipo de Santa Fé de Minas (MG). Na região de Urucuí, os sedimentos glaciogênicos são caracterizados pela presença de arenitos, siltitos e pelitos com contribuição menor de material grosseiro (dropstones e intercalações de diamictitos).

O objetivo deste trabalho consiste na descrição e na caracterização genética desses sedimentos, relacionando-os aos sistemas turbidíticos de Mutti (1992).

AS FÁCIES TURBIDÍTICAS

O Membro Brejo do Arroz é composto na região de Urucuí por intercalações rítmicas de arenitos, siltitos e folhelhos, que apresentam grande persistência lateral (podendo ser seguidas por centenas de metros). Estes sedimentos apresentam abundantes estruturas sedimentares incluindo: lentes arenosas, laminações cruzadas truncaúas, marcas onduladas, carpetes de tração, acamamento gradacional inverso, clastos arrancados, estratificações cruzadas e, localmente, seixos pingados.

Os vários ciclos deposicionais, atribuídos em parte a ataques de fluxos turbulentos mostram espessuras de 1 a 3 metros e colorações variando de vermelho tíjolo a ocre, passando por tons amarronzados.

Seguindo a nomenclatura de Mutti (1992), as sucessões deste trato de fácies turbidítica incluem depósitos do tipo F₄, F₅, F₇, F₈ e F₉, cuja distribuição vertical é exemplificada na figura 2.

Fácies F₄ - bancos de arenitos (30 a 40 cm) com ou sem seixos esparsos mostrando comummente a presença de carpetes de tração. Algumas camadas individuais apresentam estratificações cruzadas. Os contatos de topo e base são bruscos.

Fácies F₅ - arenitos maciços (até 35cm) mal selecionados com cimento calcífero. Geralmente os contatos são bruscos, mas existem casos de contatos transicionais. O acamamento gradacional inverso é raro.

Fácies F₇ - arenitos finos, em bancos delgados (menores que 5 cm) bem selecionados, com marcas onduladas e laminações cruzadas truncadas.

Fácies F₈ - intercalações de níveis de siltitos ou arenitos muito finos com argilitos pouco estratificados. Raros carpetes de tração delgados são observados em láminas delgadas.

Fácies F₉ - intercalações de folhelhos e siltitos. Localmente ocorrem argilitos com grãos flutuantes de areia.

PROCESSOS DEPOSIÇIONAIS

Em contraste com as áreas de Canabrava e Santa Fé de Minas - MG, onde a sedimentação lacustre do Membro Brejo do Arroz se faz por agraçamento vertical de material em suspensão e frequentemente queda de grãos com raros fluxos de detritos, na região de Urucuí a sedimentação se dá essencialmente por fluxos gravitacionais com poucos seixos pingados associados. As correntes de densidade responsáveis pela acumulação dos ciclos psamó-pelíticos são geradas pela fusão do gelo nas adjacências de grandes lagos.

As fácies F₄ e F₅ foram depositadas pelas correntes mais densas, podendo ser correlacionadas a cada entrada de detritos no sistema lacustre e, em função de sua ritmicidade, corresponder a variações sazonais. São as fácies mais diagnósticas do sistema turbidítico.

As fácies F₇, F₈ e F₉, constituem o maior volume de sedimentos, sendo depositadas por correntes de baixa densidade. Na deposição das fácies F₇ atuaram provavelmente correntes de fundo responsáveis pela geração de marcas onduladas e pelo bom selecionamento dos arenitos finos.

As Fácies F₈ e F₉ correspondem aos estágios finais de sedimentação pelas correntes, representando
depósitos distais principalmente através de mecanismos de suspensão.

CONCLUSÕES

REFERÊNCIAS BIBLIOGRÁFICAS

CAMPOS, J.E.G. & DARDEEN, M.A. A glaciação Neopaleozóica na porção meridional da Bacia Sanfranciscana. RBG (no prelo).

MUTTI, E. 1992. Turbidite sandstones. AGIP.
O CONGLOMERADO SAMBURÁ (GRUPO BAMBUÍ, PROTEROZÔICO SUPERIOR) E ROCHAS SEDIMENTARES ASSOCIADAS NO FLANCO LESTE DA SERRA DA PIMENTA, SW DE MINAS GERAIS: UM SISTEMA DE FAN-DELTA

PAULO DE TARSO AMORIM CASTRO - DEGEOEM/UFRJ
MARCEL AUGUSTE DARDENE - IG/UFRJ

Os conglomerados associados ao Grupo Bambuí (Proterozóico Superior) na porção sul da zona externa da Faixa Brasília distribuem-se de maneira dispersa ao longo dos 250km que separam as cidades de Carmo do Rio Claro e Carmo do Paranaíba (MG). Suas ocorrências mais significativas, em área, localizam-se no vale do Rio Samburi, no município de Bambuí (Branco, 1957; Tompkins & Gonzaga, 1991); no vale do Rio São Francisco, nos municípios de Vargem Bonita e São Roque de Minas (Magalhães, 1989; Tompkins & Gonzaga, 1991) e no flanco leste da Serra da Pimenta, nos municípios de Plum-hi e Pimenta (Fritzens et al., 1980; Castro, 1994). São relatados aqui os resultados dos estudos de caráter sedimentológico feitos nessa última ocorrência.

A ORIGEM DO CONGLOMERADO SAMBURÁ

A literatura geológica sobre a região apresenta duas hipóteses relativas à origem do conglomerado Samburá:

- seriam fruto de uma glaciação que atingiu todo o Cratôn do São Francisco no Neoproterozóico, anterior à deposição das rochas do Grupo Bambuí, sendo equivalente litoestratigráfico da Formação Jequitaí segundo Dardeine (1978), Karfunkel & Hoppe (1988) e Tompkins & Gonzaga (1991);

Os estudos ora relatados visam definir o sistema deposicional ao qual estão associados os conglomerados Samburá na região da Serra da Pimenta. Nessa serra, em sua porção oriental, ocorrem rochas sedimentares siliciclásticas - conglomerados, arenitos e pelitos - associados ao Grupo Bambuí. Tais rochas encontram-se deformadas por uma tecônica rúptil cuja expressão local são falhas direccionais sinistras, falhas inversas e dobras de deslizamento flexural (Magalhães, 1989). Embora essas rochas se encontrem deformadas, as exposições contínuas nos cortes ao longo da rodovia MG-050 e em estradas vicinais permitiram discriminar as fácies e associações de fácies presentes com vistas à definição do sistema deposicional presente.

Foram reconhecidas as seguintes fácies, utilizando, parcialmente, a símbolologia sugerida por Martins Neto (1993) e por Miall (1978):

UG-CS - conglomerado suportado pelos clastos, pobremente selecionados, com seixos subarredondados de quartzo, quartzito, siltitos, rochas básicas, granitóides e riolitos. Possui raros seixos de conglomerado de matriz pelítica (clastos de **M-MS**) e blocos de quartzito e pelito. A matriz é formada por areia média, apresentando alguns grãulos e raras palhetas de moscovita. Possui um aspecto maciço;

NG-CS - Conglomerado suportado pelos clastos, com seixos de mesma constituição dos da fácies anteriormente descrita, com diâmetro variando entre 2,0 e 15,0cm, matriz arenosa com pequenos grãulos. Apresenta-se estratificado, frequentemente mostrando granodecrescência ascendente. Normalmente assentam-se sobre superfícies erosivas e em canais, principalmente sobre a fácies **UG-CS**;

M-MS - conglomerado suportado por uma matriz silto-argilosa com clastos de quartzito, quartzito, arenito, granitóide, riolito e blocos de conglomerados da fácies **UG-CS**;

Sg - arenito fino apresentando granodecrescência ascendente para siltito, em corpos com geometria sigmoidal com espessura de 0,60m e comprimento de 1,60m. Ocorre preenchendo canais;

Sgl - arenito geralmente arcossano apresentando granodecrescência ascendente e geometria lenticular com espessura média de 8,0cm, raramente atingindo espessura de 2,0cm. As lentes de maior espessura apresentam ondulações e laminações cruzadas no topo. Por vezes estão presentes grãulos e seixos dispersos cujo diâmetro varia entre 0,2 e 6,0cm;

P - argilito laminado, frequentemente intercalado com lâminas de siltito e lentes de arenito (**Sgl**);

Pdc - argilito laminado com intercalações de siltito, lentes de arenito (**Sgl**) e seixos e grãulos arredondados de quartzito, quartzito bastante esparcos.

As fácies e associações de fácies acima foram geradas pelos processos mostrados no quadro 1.
CONCLUSÕES

As fácies e associações de fácies presentes e seus processos corroboram a interpretação de que as rochas sedimentares associadas aos conglomerados Samburú ao flanco leste da Serra da Pimenta tenham sido depositadas em um fan-delta ou seja, em um leque aluvial cujas porções distais adentrariam em corpos aquosos.

BIBLIOGRAFIA

Quadro 1 - Fácies, processos formadores e possíveis ambientes (loci deposicionais)

<table>
<thead>
<tr>
<th>Fácies</th>
<th>Associações de fácies</th>
<th>Processos Formadores</th>
<th>Locus deposicional \ ambiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>UG-CS</td>
<td></td>
<td>fluxos de detritos não coesivos</td>
<td>ombreiras de canais \ lobos de fluxo de detritos</td>
</tr>
<tr>
<td>NG-CS</td>
<td></td>
<td>fluxos de detritos coesivos</td>
<td>norte externa \ distal dos leques</td>
</tr>
<tr>
<td>M-MS</td>
<td></td>
<td>fluxos direcionais</td>
<td>subaquosos</td>
</tr>
<tr>
<td>Sg</td>
<td></td>
<td>subaquosos</td>
<td>precipitação</td>
</tr>
<tr>
<td>Sgl</td>
<td></td>
<td>precipitação</td>
<td>lavagem por gravidade (gravity winnowing)*</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>precipitação</td>
<td>plataforma \ "prodelta"</td>
</tr>
<tr>
<td>Pdc</td>
<td></td>
<td>precipitação</td>
<td></td>
</tr>
</tbody>
</table>

** Postma (1984)
POSICIONAMENTO LITOESTRATIGÁFICO DOS FOSFORITOS DA FORMAÇÃO VAZANTE NA REGIÃO DE COROMANDEL-ROCINHA-LAGAMAR, MINAS GERAIS

MARCEL A. DARDEENNE - UNB
FLÁVIO H. FREITAS-SILVA - UNB
JÚLIO F. C. SOUZA - UNB
GISLENE M. S. NOGUEIRA - UNB
JOSÉ ELOI G. CAMPOS - UNB

INTRODUÇÃO

Neste trabalho detalha-se, o posicionamento litoestratigráfico das diversas ocorrências de fosforitos na porção basal da Formação Vazante que foi subdividida, da base para o topo em 7 unidades.

LITOESTRATIGRAFIA DA PORÇÃO BASAL DA FORMAÇÃO VAZANTE

UNIDADE B - É composta por um pacote de metarritmitos representado por finas intercalações centimétricas a decimétricas de quartzo-brocas e ardósias alteradas com coloração amarelada e avermelhada. A passagem da unidade A para a unidade B é transicional.

UNIDADE C - Apresenta-se predominantemente na forma de um espesso pacote de ardósias e metassiltitos regularmente intercalados, com coloração de alteração amarelada e avermelhada. Em direção ao contato com a unidade fosfatada que a sobrepõe, observa-se uma zona de transição representada por ardósias cinza escuro carboníticas, príritos, com finas intercalações fosfáticas. Nesta unidade registram-se ainda ocasionais lentes de dolomitos rosados e paraconglomerados.

UNIDADE D - De cor essencialmente amarelada, apresenta um aspecto bandado característico, evidenciado por níveis de material acinzentado, maciço e resistente, rico em fosfato, com espessura variável (centimétrica a decimétrica), alternando com leitos pelíticos amarelados. Esta sequência fosfatada, intensamente microdrobrada, é relativamente contínua, principalmente na base, com espessura aforante aproximada de 250m no depósito de Rocinha. Para o topo, a rocha fosfática encontra-se na forma de lentes nas ardósias amareladas estéreis ou pobres em fosfato (P2O5 < 5%), caracterizada pela presença de glauconita (Da Rocha Araújo, 1988; Da Rocha Araújo et al., 1992).

Os horizontes fosfatados são representados por fosfolúvitos e fosfarenitos. Esses últimos são constituidos por intraclastos, pellets e pseudo-oolitos de natureza fosfatada, envolvidos por uma matriz de apatita microcristalina. Destaca-se o crescimento de prismas de apatitas secundárias em volta dos intraclastos e nos espaços vazios (voids).

O mineral preponderante é uma fluorapatita com baixos teores de CO2 e OH-, tendo sido interpretada como uma transformação da carbonato-fluor-apatita primária durante o metamorfose e o intemperismo (Da Rocha Araújo et al., 1992). Durante a alteração supergênicas, desenvolveram-se apatitas ricas em alumínio do tipo wavelita (Nogueira, 1993).
O intervalo fosfatado acima descrito constitui o depósito de Rocinha, sendo denominado Fosforito 2. As reservas são da ordem de 415 MT com teores médios variando entre 11 e 13% de P₂O₅.

UNIDADE E - Foi subdividida em duas subunidade E1 e E2 em função das variações laterais de fácies observadas entre os depósitos de Rocinha e Lagamar. A Sub-unidade E1 ocorre na área de Rocinha, onde o depósito de fosfato é sobreposto por um espesso pacote de arãoisias vermelhas, argilosas e totalmente estéreis, mostrando um aspecto relativamente homogêneo nos raros afloramentos visíveis. Pequenas lentes de paraconglomerados são descritas nesta sub-unidade (Chaves et al., 1976).

A Sub-unidade E2 distribui-se lateralmente em relação a E1, caracterizando-se em direção ao depósito de Lagamar por uma sedimentação rítmica representada pela alternância de fosfarenitos cinza escuro e fosfolítitos. Os fosforitos de Lagamar apresentam características semelhantes aos de Rocinha, com a presença de intraclastos, pellets, pseudo-órtlos, matriz micrítica e crescimento de prismas secundários de apatita (Nogueira, 1993). O volume de fosforito é bem menor em relação à Rocinha (da ordem de 5 MT), mas com teores entre 30 e 35% de P₂O₅. Este intervalo de fosfato foi denominado Fosforito 3.

UNIDADE F - É composta por metaarritrítitos onde alternam-se níveis de arãoisias, metassiltitos e quartzitos. Em direção ao topo intercalam-se níveis de ortoconglomerados com seixos de quartzitos, metassiltitos, quartzo e calcáreos pretos, descritos como “Conglomerado Arrependido” por Dardenne et al. (1989).

UNIDADE G - Sobrepõe-se à unidade anterior, sendo descrita sob a denominação Membro Lagamar (Dardenne et al., 1889; Campos Neto, 1984). É caracterizada pela sedimentação carbonática na forma de calcáreos pretos, dolomitos cinza escuros, dolorutídos e, sobretudo, belíssimos biohermas de cor rosada a bege claro com estreitas planos paralelas, oncólitos e estromatólitos colunares com laminações convexas e cônicas pertencendo aos gêneros *Kusielia*, *Colonella*, *Conophyton* e *Jacuaphyton*. Essas biohermas interdigitar-se lateral e verticalmente com a espessa sequência pelítica denominada Membro Serra do Garrote por Dardenne (1978, 1979) que se sotopõe aos dolomitos da região de Vazante. O Membro Serra do Garrote é representado por arãoisias cinza escuro, às vezes carbonosas, alterando-se, em superfície, para cores amareladas e avermelhadas.

CONCLUSÕES

Na região de Coromandel-Rocinha-Lagamar, as ocorrências de rochas fosfatadas constituem três intervalos distintos de fosforitos, situados na porção basal da Formação Vazante, em posição litoestratigráfica inferior às principais lentes dolomíticas estromatolíticas conhecidas, sendo associadas a fácies pelíticas de águas profundas.

BIBLIOGRAFIA

ANÁLISE DE ELEMENTOS ARQUITETURAIS NA CARACTERIZAÇÃO DO SISTEMA FLUVIAL DA FORMAÇÃO UBERABA, CRETÂCEO SUPERIOR DA BACIA DO PARANÁ, NO TRIÂNGULO MINEIRO

PAULO DIAS FERREIRA JÚNIOR - Mestrado em Geologia - DECEO/EM/UFOP
WILSON JOSÉ GUERRA - DECEO/EM/UFOP

INTRODUÇÃO

Este trabalho discorre sobre o ambiente deposicional das rochas sedimentares da Formação Uberaba (Cretáceo Superior do Grupo Bauru, Bacia do Paraná) nas vizinhanças de Uberaba, no Triângulo Mineiro. Foi aplicada a análise de elementos arquiteturais, proposta por Miall (1985), que fornece uma visão tridimensional dos depósitos fluviais a partir de afloramentos bidimensionais. O local escolhido fica às margens da BR 050 (que liga Uberaba a Uberlândia), 500 m após a ponte sobre o Rio Uberaba. Esta Formação foi estudada por diversos autores, entre eles Hasui (1968), Barcelos (1984), Barcelos et al. (1987) e Ferreira Jr. & Guerra (1993).

MÉTODOS

A base deste método é o estudo de superfícies de descontinuidade presentes nas rochas sedimentares, classificadas em ordem hierárquicas, que definem corpos tridimensionais denominados de elementos arquiteturais, que compõem um dado sistema deposicional. Estas superfícies separam as unidades deposicionais, que variam de pequenas formas de leito, a complexos de canais e paleovalves e representam intervalos de não deposição ou erosão que variam de alguns minutos a centenas de milhares de anos (Miall, 1988a). Na delimitação e classificação destas superfícies devem ser observados três princípios (Miall, 1988b): (a) uma dada superfície pode ser truncada por outra de igual ou maior ordem, mas nunca por outra de menor ordem, (b) na definição de uma superfície, deve-se tomar, como base, outra de maior ordem, (c) superfícies de baixa ordem podem aumentar de ordem lateralmente. A tabela 1 mostra um sumário destas superfícies.

Miall (1985) subdividiu os depósitos fluviais em oito elementos arquiteturais básicos, que são separados por superfícies de 3ª ordem e caracterizados por uma assembléia de litofácies geneticamente relacionadas, geometria interna e natureza dos contatos superior e inferior. De acordo com a direção de crescimento das macroformas (dadas por superfícies de 1ª, 2ª e 3ª ordem), elas podem ser classificadas como DA (downstream accretion macroforms - macroformas de acréscimo a jusante) ou LA (lateral accretion - macroforma de acréscimo lateral), existindo, ainda, uma graduação entre elas. Miall (1994) sugeriu uma divisão arbitrária entre as DA e LA, tomando como base o ângulo que elas fazem com a direção regional do fluxo (dado pela direção de estratos cruzados): paralelo ou até 60º, depósitos de acréscimo à jusante; em alto grau - 60º a 90º - depósitos de acréscimo lateral.

ANÁLISE DE ELEMENTOS ARQUITETURAIS

Foram identificados dois tipos de macroformas: (a) 2A-DA, 3-DA, 4-DA, 5A-DA, 6-A-DA, 7-DA e 9A-DA interpretadas como depósitos de acréscimo a jusante, DA; (b) 8-DA, formada por depósitos de acréscimo lateral, LA. Os elementos arquiteturais foram numerados de acordo com suas relações genéticas e em ordem cronológica de deposição (Figura 1).

A macroforma 6A-DA, tomada como exemplo de depósitos de acréscimo a jusante, é constituída pelas litofácies Ac, As e S. Os limites superior e inferior são dados por superfícies de 5ª e 4ª ordem, mostrando que esta macroforma se desenvolveu ora sobre a base dos canais ora sobre outra macroforma (5A-DA). Em alguns pontos, as superfícies de 3ª ordem, desenvolvem-se do topo para a base, cortando em ângulo relativamente alto (~ 12º) superfícies inferiores de menor grau hierárquico. A direção de crescimento das superfícies de 1ª, 2ª e 3ª ordem é 259º, apresenta baixa dispersão em relação à direção do fluxo (234º), tomada a partir de estratos cruzados, o que indica de um depósito de acréscimo à jusante. A parte superior desta macroforma é marcada pelo elemento 6B-CH (channels - canais), representante de depósitos de pequenos canais. Ocorrem depósitos tipo lag associados à superfície basal deste elemento (3ª ordem), que é côncava para cima e corta em alto ângulo (25º) os estratos inferiores. As superfícies internas de menor ordem também são côncavas para cima (Fig. 1).

As macroformas 2A-DA, 5A-DA e 9A-DA são interpretadas de maneira análoga à anterior: depósitos de acréscimo à jusante com a parte superior recortada por pequenos canais.
A macroforma 8-LA, é apontada como exemplo de depósito de acréscimo lateral (Fig. 1). Esta unidade em muito se assemelha à anterior, podendo se desenvolver sobre a base de canais (superfície de 5° ordem) ou sobre outra macroforma (7-DA). Mudanças na orientação desta forma de leito são registradas por superfícies de 3° ordem, que cortam em alto ângulo (19°) superfícies de 2° e 1° ordem. A distinção entre os estilos de sedimentação das macroformas 6A-DA e 8-LA é feita pela direção de crescimento. 8-LA, que cresceu orientada segundo 340°, faz um ângulo maior que 60° com a direção do fluxo (234°), sugerindo, assim, um depósito de acréscimo lateral.

CONCLUSÕES

Com base no registro das macroformas, sugere-se, aqui, um estilo fluvial de rios entrelaçados com baixa a média sinuosidade, para os arenitos da Formação Uberaba, aflorantes na BR 050. O predomínio dos elementos DA (2A-DA, 3-DA, 4-DA, 5A-DA, 6A-DA, 7-DA e 9A-DA) sobre LA (8-LA), indica que a deposição destes arenitos se deu, principalmente, a jusante. As condições para o desenvolvimento do elemento 8-LA são, provavelmente restritas, pois este tipo de depósito é indicativo de canais com alta a média sinuosidade, incompatíveis com a direção regional do fluxo (261°), que apresenta uma baixa dispersão das medidas de paleocorrente. O predomínio de DA, frequentemente recortado por CH, sugere sedimentos depositados a jusante, em períodos de cheias, posteriormente retrabalhados por pequenos canais que dissecaram, em parte, o topo das macroformas, nos períodos de baixa dos rios.

AGRADECIMENTOS

Os autores gostariam de agradecer à FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais, pelo apoio financeiro (Processo 100/92), bem como ao Centro de Pesquisas Paleontológicas Llewelyn Ivor Price da Prefeitura de Uberaba, pelo suporte à realização deste trabalho e ao Prof. Paulo de Tarso A. Castro (DEGEOM/EM/UFOP) pela revisão crítica do texto.

BIBLIOGRAFIA

Tabela 1: Superfícies hierárquicas (modificado de Miall, 1988a, b)

<table>
<thead>
<tr>
<th>ORDEM</th>
<th>CARACTERÍSTICAS</th>
<th>SIGNIFICADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>plana, não erosiva, limita estratos individuais do mesmo tipo</td>
<td>separa sequências ciclicas de pequena escala, mostrando continuidade na sedimentação</td>
</tr>
<tr>
<td>2</td>
<td>plana, pouco erosiva, limita cores ou assembléia de fácies geneticamente relacionadas</td>
<td>indica variações nas condições ou orientação do fluxo, sem parada significativa da sedimentação</td>
</tr>
<tr>
<td>3</td>
<td>erosiva, com ângulo de até 15°, estende-se de cima para baixo separando assembléias de fácies similares</td>
<td>indica mudanças na orientação da macroforma provocadas por reativações de grande escala decorrentes de processos sazonais</td>
</tr>
<tr>
<td>4</td>
<td>plana ou convexa para cima, separa assembléias de fácies com orientações diferentes</td>
<td>limite superior das macroformas</td>
</tr>
<tr>
<td>5</td>
<td>plana ou côncava para cima, marcada por estruturas de corte e preenchimento e associada a depósitos tipo fog</td>
<td>limite complexos de preenchimento de canais</td>
</tr>
<tr>
<td>6</td>
<td>irregular, define subdivisões estratigráficas mapeáveis</td>
<td>separa grupos de canais e paleocanales</td>
</tr>
</tbody>
</table>
Figura 1: Análise de elementos arquiteturais na BR-050

Direção de Pileuscorrentes

SUPERFICIES HISPÁNICAS

1° Ordem
2° Ordem
3° Ordem
4° Ordem
5° Ordem
6° Ordem

LITOFÁCIES

1° Ordem: Arnão, estratificação lítica com estratificação córnea
2° Ordem: Litostratificação localizada com estratificação córnea
3° Ordem: Litostratificação com estratificação córnea
4° Ordem: Litostratificação com estratificação córnea
5° Ordem: Litostratificação com estratificação córnea
6° Ordem: Litostratificação com estratificação córnea

Legenda:

1: Resultado microfotografado com erros de localização e qualidade de alta
2: Resultado microfotografado com erros de localização e qualidade de alta
3: Resultado microfotografado com erros de localização e qualidade de alta
4: Resultado microfotografado com erros de localização e qualidade de alta
5: Resultado microfotografado com erros de localização e qualidade de alta
6: Resultado microfotografado com erros de localização e qualidade de alta
CARACTERIZAÇÃO FACIOLÓGICA DA FORMAÇÃO BEBEDOURO (PROTEROZÓICO SUPERIOR) NO ESTADO DA BAHIA

JOSÉ TORRES GUIMARÃES - CPRM
JOSÉ MARIA LANDIM DOMINGUEZ - Curso de Pós-Graduação em Geologia - UFBA

INTRODUÇÃO

A Formação Bebedouro ocorre na parte central do Estado da Bahia, na região da Chapada Diamantina Oriental. Esta unidade apresenta espessuras variáveis de 1 a 200m, posicionando-se estratigráficamente na base do Grupo Una (Neoproterozóico) e sendo sobreposta pelas rochas carbonáceas pertencentes à Formação Salitre, do mesmo Grupo. Os sedimentos da Formação Bebedouro distribuem-se descontinuamente por uma área superior a 40.000km², aflorando nas margens de amplas estruturas sinformais, moldadas nas rochas do Supergrupo Espinhaço (meso-proterozóico), denominadas informalmente de bacias de Irecê, Salitre, Utinga e Itaúca (Fig. 1). Uma origem glacial tem sido normalmente atribuída à Formação Bebedouro. Depósitos glaciogenicos neoproterozóicos correlacionáveis à esta formação ocorrem nos estados de Minas Gerais, Goiás, tocantins, Mato Grosso e Mato Grosso do Sul, sendo todos englobados na chamada glaciação “Jequitinhonha” (Gonzaga & Dardenne 1991). As poucas idades disponíveis para a Formação Bebedouro, determinadas pelos métodos do Rb/Sr e K/Ar indicam uma época de deposição entre 950 e 800 Ma (Maccio & Bonhomme 1984).

LITOFÁCIES DA FORMAÇÃO BEBEDOURO

O estudo aqui apresentado compreende uma caracterização sedimentológica da Fm. Bebedouro em toda a sua área de ocorrência no Estado da Bahia. Os sedimentos que compõem esta formação podem ser agrupados em três litofácies distintas:

Litofácies de Diamictitos

Compreende diamicitos de matriz argilosa e arenosa (arcossiana e grauváquica). A matriz apresenta caráter maciço ou grosseiramente estratificado de cores variadas (avermelhada, arroxeada e cinza) na qual flutuam uma gama variada de clastos com tamanho variando de grãulo a bloco ou matação de dimensões métricas. Estes clastos apresentam composição variada (granito róseo e cinza, gnaisses, pegmatito, migmatito, rocha básica, quartzo ou quartzo cinza a branco, calcisilicática, quartzo verde, arenito rosado, argilito, calcário e chert). Não se encontram estrias ou “grooves” nesses clastos ainda que alguns se mostram grosseiramente facetados e polidos. A distribuição dos clastos na matriz é caótica ou do tipo cauda grossa e alguns podem apresentar-se imbricados segundo o eixo “b”. Os diamicitos ocorrem em bancos tabulares centimétricos a métricos, ou formando carais rasos, por vezes superpostos e com larguras de até 6m. Embora a grande maioria destes bancos exibam aspecto maciço, alguns apresentam estratificação paralela e/ou acanalada, estratificação cruzada e marcas de ondulação simétricas no topo. Algumas lentes centimétricas de arcócio ocorrem por vezes no interior do diamicito. Foi observada uma variação na composição e às vezes no tamanho dos clastos nas diversas áreas de ocorrência da Formação Bebedouro indicando áreas-fonte variadas.

Litofácies de Arenitos

Compreende arenitos com granulação fina a média, de cores avermelhada, rosada e cinza esverdeada com os grãos de quartzo quase sempre impregnados com óxido de ferro. Os grãos de areia apresentam-se sub-arrondados a arredondados. Estratificação plano-paralela, estratificação cruzada de espessura centimétrica e marcas de ondulação assimétricas predominam nesta litofácies, embora alguns arenitos possam apresentar aspecto interno maciço. A litofácies de arenitos normalmente recobre a litofácies de diamicitos segundo contatos bruscos e irregulares. Por vezes estas duas litofácies se alternam de maneira cíclica.

Litofácies de Pelitos e Ritmitos

Compreende pelitos de cores avermelhada, arroxeada e esverdeada finamente laminados ou ocasionalmente maciços. Os ritmitos são constituídos por intercalações de arcósios e grauvacas com estes pelitos. Não são raros os afloramentos desta litofácies contendo clastos dispersos (pingados). Os arcósios têm granulação variável de fina a grossa, cores arroxeada, cinza claro a amarelada e rosada, e são via de regra mal selecionados. As estruturas sedimentares predominantes são a laminação plano-paralela e a gradação normal. As grauvacas têm granulação fina a grossa, cores avermelhada, arroxeada e cinza, são mal selecionadas e contêm por vezes, fragmentos de rochas argilosas e feldspáticas. Estratificação plano-paralela, estratificação cruzada e marcas de ondulação assimétricas são as estruturas sedimentares dominantes. Os contatos da litofácies de pelitos e ritmitos com as demais litofácies podem ser gradacional ou brusco. As três litofácies descritas acima apresentam contatos bruscos e concordantes com os calcários da Formação Salitre sobrepontos. Pelo menos em uma localidade (Bacia do Salitre) foi
encontrado um possível paleossolo (concreções ferruginosas com seixos dispersos) separando o diamicito fresco, de bancos de dolomitos com estruturas indicativas da ação de tempestades. Adicionalmente, na Bacia de Ituiúva foi encontrado um conglomerado de matriz carbonática sobreposto diretamente ao diamicito e recoberto por calcários com estratificação cruzada. Os dados de paleocorrentes obtidos nas litofácies de arenitos e de pelitos e rítmites são até o momento em pequeno número e portanto insuficientes para se fazer qualquer prognóstico a respeito das direções de paleofluxos que atuaram durante a deposição da formação.

CONCLUSÕES

Os diamicitos são as litofácies mais utilizadas para interpretar sedimentos mal selecionados como tilitos. No caso da Formação Bebedouro, esta litofácies tem ampla distribuição por toda a área estudada, porém apresenta quase sempre geometria em canal e/ou está associada às litofácies de arenitos e de pelitos e rítmites, não exibindo qualquer feição normalmente diagnostica de sedimentos depositados pela ação direta de geleiras, a não ser a grande variedade dos clastos presentes. Um outro aspecto a considerar na litofácies é diamicitos é a diminuição do tamanho dos clastos de leste para oeste. Este fato é consistente com uma origem gravitacional de fluxo de detritos para esta faciologia. Na litofácies de arenitos predominam estruturas trativas indicativas da deposição pela ação de correntes, possivelmente em sistemas fluviais. Na litofácies de pelitos e rítmites as estruturas sedimentares indicam deposição pela ação de correntes de turbidez. Todas estas evidências sugerem que a Formação Bebedouro não representa a deposição pela ação direta do gelo e sim o retrabalhamento de depósitos glaciais por fluxos de detritos, correntes de turbidez e rios temporários, sendo portanto mais apropriadamente classificados como depósitos dos tipos flúvio-glacial e glaciomarinho/glaciolacustre.

REFERÊNCIAS

Fig. 1 - Depósitos de “Mixitos” do Proterozóico Superior no Estudo da Bahia, e suas relações com o Cráton São Francisco (Adaptado de Mascarenhas, 1990).
CONSIDERAÇÕES MORFO-GENÉTICAS SOBRE CAVERNAS EM QUARTZITOS NA CORDILHEIRA DO ESPINHAÇO

FERNANDO VERASSANI LAUREANO - Guano Speleo-IGC/UFG
FERNANDO LUIS LUCENA CANÇADO - Guano Speleo-IGC/UFG

No Cadastro Nacional de Cavidades Naturais, elaborado pela SBE (Sociedade Brasileira de Espeleologia), nota-se a existência de cavernas em rochas quartizíticas do Supergrupo Espinhaço desde Lençóis (BA) até Conceição do Mato Dentro, em Minas Gerais. Estas cavernas encontram-se disseminadas nas cordilheiras da Chapada Diamantina e Espinhaço Meridional apresentando algumas concentrações locais como na região de Diamantina/ Gouveia. Nota-se, no entanto, a carência de trabalhos publicados, ficando as mesmas fadadas a serem meros números cadastrais.

As recentes descobertas efetuadas pelo Guano Speleo nas regiões de Conceição do Mato Dentro e Palmeiras (BA), estas em trabalho conjunto com o CRA (Centro de Recursos Ambientais - BA), não só aumentam o número de cavidades conhecidas, como também são fontes, em conjunto, de informações morfológicas e de espeleogênese neste contexto.

O presente trabalho apresenta os primeiros resultados obtidos na exploração, mapeamento e estudo de duas novas cavernas em quartizito na Cordilheira do Espinhaço. Ambas tiveram sua existência indicada por moradores locais, foram exploradas e topografadas em escala 1:200, com grau de precisão 3D (BCRA), procurando-se avaliar os contextos estratigráfico e estrutural onde estas evoluíram.

GRUTA DO RIACHINHO (BA-196)

Localiza-se na região conhecida como Vale do Capão, no município de Palmeiras, situando-se aproximadamente a 5km ao sul do distrito de Caeté-Açu, possuindo coordenadas geográficas 12°35'41"S e 41°29'45"W e altitude da boca 960m.

A caverna desenvolveu-se nos quartizitos da S.D. Tombador-Caboclo, posicionando-se no flanco W do referido anticlinal. Neste local a rocha apresenta estratificação plano-paralela com altitude do acamamento N15E/20NW, arcabouço sustentado pelos grãos, cuja granulometria varia de areia fina a grossa. A fração areia grossa é arredondada e a porção mais fina subarredondada. A presença de cimento silicico e silificação é característica da rocha, enquanto no interior da gruta esta apresenta-se de forma bastante friável, podendo ser facilmente desagregada.

Possui desenvolvimento em projeção horizontal de 201m e desnível total de 26m. A entrada pode ser caracterizada como originada por abatimentos, com blocos abatidos recobertos por sedimentos recentes formando uma rampa até a zona afótica. O conduto principal se desenvolve da boca até o sumidouro segundo direcção NS, possui o piso quase todo recoberto por blocos abatidos deci a decamétricos e seção vertical aproximadamente retangular. Em alguns pontos formaram-se espeleotemas, dos tipos corálida e cortina em sílica, recobertos por uma fina superfície de hidróxido de ferro, semelhantes aos descritos por Lima (1987). O conduto paralelo, também com direcção NS, tem início num salão alçado em relação ao conduto anterior tendo comunicação através de fendas subverticais com o mesmo. A partir deste passa-se a um outro salão com seção vertical em forma de cogumelo e finalmente tem-se o conduto de teto baixo onde a rocha aflora predominantemente no teto e no piso, formando “panelas” neste último e pilares de rocha nas paredes, assumindo a forma de um “queijo suíço”.

Três planos estruturais condicionam o desenvolvimento da caverna, (i) acamento, (ii) fraturas NS e (iii) fraturas N60W, sendo estas subverticais. Subordinadamente, algumas feições EW, são notadas.

GRUTA DA BOCAINA

Situada no município de Conceição do Mato Dentro (MG), distrito de Tabuleiro, possui coordenadas geográficas 43°34'21"W e 19°5'2"S e altitude da boca 1250m, estando inserida na bacia hidrográfica do Rio Doce.

O vale do Rio Preto, na região do Tabuleiro, constitui um lineamento ENE, que na porção NE é caracterizado por trecho em canyon e mais a oeste separa escarpas escalonadas. Há relação direta entre a geologia e a geomorfologia local, onde o canyon representa o encaixamento de drenagem nos espessos quartizitos cólicos da Formação Galho do Miguel, enquanto o trecho escalonado deve-se a alternância pelito-psamítica da Formação Sopa-Brumadinho e
CONSIDERAÇÕES SOBRE ESPELEOGÊNESE

Os resultados obtidos a respeito da gênese destas cavernas, levam a conclusões semelhantes àsquelas obtidas por Karmann (1986) e Urbani (1988).

O processo inicia-se com a dissolução da sílica ao longo de interseções entre acamamento e planos de fratura, permitindo a percolação da água e conferindo à rocha um caráter frávilo. A presença de espeleotemas de sílica constitui a evidência de que o processo de dissolução ocorre, mesmo a baixos valores de pH.

Posteriormente ocorre o processo de tubificação ("piping"), que consiste no transporte por arraste dos grãos livres e posterior alargamento por abrasão e erosão. A partir de então o processo de remoção mecânica é predominante, ocasionando morfologias do tipo “panelas”, “queijo suíço” conferido pelos pilares testemunhos e entalhamentos nas paredes.

Associado ao alargamento dos planos de dissolução e continuidade dos processos anteriores tem início a fase de abatimentos, que condiciona o desenvolvimento vertical das cavernas.

AGRADECIMENTOS

Os autores agradecem à Prefeitura Municipal de Palmeiras, ao ambientalista Aloísio Cardoso (CRA-BA) e à diretoria do IG/UFMG.

REFERÊNCIAS BIBLIOGRÁFICAS

INTERPRETAÇÃO PALEOAMBIENTAL DO TERCIÁRIO DA BÁCIA DO GANDARELA COM BASE NAS OCCORRÊNCIAS DE DINOFLAGEladOS DE ÁGUA DOCE E OUTROS PALINOMORFOS

JOSÉ RICARDO MAIZATTO - DEGEO/EM/UFOP
MARÍLIA DA SILVA PARES REGALI - PETROBRÁS/SEREC/CENSUD

INTRODUÇÃO

A bacia cenozóica do Gandarela encontra-se localizada a nordeste do Quadrilátero Ferrífero, sendo descoberta e descrita inicialmente por GORCEIX (1884). Esta bacia terciária compõe-se de linhítos, arenitos, argilitos e conglomerados de origem flúvio-lacustre (MAIZATTO & CASTRO, 1993).

Historicamente, a origem e evolução da bacia do Gandarela esteve vinculada a duas hipóteses: uma delas estaria ligada a um processo de dolinamento (KRAHENBUHL et al., 1989) e a outra atribui um processo tectônico gerador (BRAINIKOV, 1947). MAIZATTO & CASTRO (1993) admitem um processo tectônico, qualificado como rúptil distensivo para explicar a formação e o desenvolvimento desta bacia.

PINTO & REGALI (1991) dataram as rocias como sendo pertencentes ao intervalo de tempo do Eoceno Superior ao Mioceno Inferior. Atualmente os palinomorfo, principalmente os dinoflagelados, estão sendo analisados a partir de amostras de 11 testemunhos de sondagem de poços pertencentes à Minerações Brasileiras Reunidas, com o objetivo de caracterização de aspectos paleoclimáticos.

OS DINOFLAGELADOS PRESENTES NA BÁCIA DO GANDARELA

Uma das características das rochas sedimentares da bacia terciária do Gandarela é o seu vastíssimo conteúdo palinológico. Ocorrem ali uma infinidade de palinomorfos, além dos dinoflagelados de água doce, principal interesse do presente trabalho.

Devido à escassez de trabalhos sobre dinoflagelados dulciaquídicos, procurou-se agrupar as formas estudadas de acordo com as similaridades morfológicas que cada grupo apresentava, sendo possível caracterizar duas espécies principais Cingulodinium gandarelenesis Maizatto, sp.n. (foto 1) e Concinnus cysta brasiliensis. Maizatto, sp.n. (foto 2).

OS DINOFLAGELADOS E OS INDICADORES PALEOClimáticos

Em alguns intervalos pertencentes, principalmente, ao Eoceno e Oligoceno, as duas espécies novas Cingulodinium gandarelenensis e Concinnus cysta brasiliensis, praticamente desaparecem quando são observados em lâmina a ocorrência associada de zigósporos de Zygnematales e Botryococcus sp.. Segundo COOKSON (1953), Botryococcus sp. habita ambientes de águas doces até salobras, já as algas pertencentes ao grupo das Zygnematales só se adaptam às águas doces sendo excelentes indicadores de ambientes lacustres mesotróficos (ZAMALOA, 1993).

CONCLUSÃO

Os dinoflagelados de água doce que ocorrem nos depósitos terciários da bacia do Gandarela, podem ser utilizados como indicativos de mudanças paleoclimáticas e paleoambientais que teriam ocorrido localmente durante o Cenozóico. Esses organismos indicariam prováveis condições climáticas semi-áridas, gerando uma diminuição temporária na espessura da lâmina d'água desse paleolago, tendo como consequência o aumento da salinidade. A possibilidade da ocorrência de condições semi-áridas, adquire maior consistência, com a associação de gramíneas e pólen de ginnospermas apontando para condições semi-áridas ocasionadas por uma queda de temperatura. Esse resfriamento, segundo KELLER (op cit.), seria global e com alternanças para períodos mais quentes durante o Eoceno e Oligoceno. As condições de semi-árides dariam lugar às de maior umidade e consequentemente o paleolago do Gandarela adquiriria características mesotróficas, diagnosticadas a partir da ocorrência conjunta de zigósporos de Zygnematales e de Botryococcus sp..
BIBLIOGRAFIA

FOTO 1 - Cingulodontium gandarensis

FOTO 2 - Concinnucysta brasilensis
CONSIDERAÇÕES SOBRE O AMBIENTE DEPOSIONAL DO MEMBRO SERRA DA GALGA, CRETÁCEO DA BACIA DO PARANÁ

MARIÂNGELA G. PRAÇA LEITE - UFOP
NEWTON SOUZA GOMES - UFOP
MARIA DO CARMO SANTOS - UFOP
A. D. OLIVEIRA - UFOP

INTRODUÇÃO

Apesar de conhecidas desde o início do século, as rochas do Grupo Bauru só ganharam destaque na década de 50, com o desenvolvimento de pesquisas paleontológicas (Price, 1957). O Membro Serra da Galga destaca-se por ser um dos maiores depósitos brasileiros de ossos de dinossauros, crocodilianos e quelonios, entre outros. Mas foi só nas décadas de 70 e 80 que surgiram os primeiros trabalhos regionais com estudos sedimentológicos e estratigráficos (Barbosa et al. 1970; Suguio 1981; Barcelos & Suguio 1987; Fulfaro & Barcelos 1991). Infelizmente, ainda é pouco o que se sabe destas rochas, devido à falta de trabalhos de detalhe. Dentre todas as unidades do Grupo Bauru, o Membro Serra da Galga é provavelmente o que mais carece de estudos em termos de ambiente deposicional, provavelmente pela falta de boas exposições.

METODOLOGIA
Este trabalho teve como base um reconhecimento de campo quando foram levantados, de forma sequencial, diversos perfis litoestratigráficos. Tais perfis foram realizados em cortes de rodovias, estradas não pavimentadas, ferrovias, voçorocas e principalmente drenagens. Para tal utilizou-se a divisão faciológica adotada por Santos et al. 1994, que definiram seis litofácies (C, Ac, Am, Si, Aca e S), individualizadas por suas características composicionais e estruturas sedimentares.

Com os dados obtidos no campo, foram confeccionados perfis compostos e realizada uma correlação estratigráfica preliminar.

AMBIENTE DEPOSIONAL
Os dados obtidos permitem caracterizar para as "rochas Serra da Galga", na área estudada, um depósito de sistema fluvial, do, tipo braided sob condições climáticas semi-áridas. Neste tipo de sistema, a deposição se dá em um complexo de canais rasos, de baixa sinuosidade e alta mobilidade, entremeados por barras transversais e longitudinal.

A análise detalhada dos perfis mostra que a evolução do sistema braided foi responsável por uma superposição de ciclos de granodercrescência ascendente (finning-upward), amalgamados (Fig. 1). Estes ciclos são função da sedimentação episódica do sistema, ocasionada pela sazonalidade do clima árido, que se caracteriza por um regime de enxurradas cuja energia diminui de forma gradual.

Cada ciclo inicia-se com sedimentos grossos, em geral conglomerados, que se assentam sobre o ciclo anterior de forma abrupta, com contatos erosivos (Fig. 1). Estes conglomerados, frequentemente apresentam uma concentração de seixos maiores e bolas de argila na base, típicos de depósitos residuais de canal.

Estes sedimentos grossos são recobertos por areia média à conglomeráticas, ora maciças ora com estratificações cruzadas. Estas estratificações são acanadas de médio porte com marcada laminação granulometrica, muitas vezes destacadas pela presença de intraclásticos argilosos orientados. Tais sedimentos são depositados pela migração de megaripples com formas lunadas ou linguoides.

O topo dos ciclos é representado ora por siltitos arenosos ora por silcretes/calcretes/palicretes (Fig. 1). A sedimentação fina representada pelos siltitos é rara neste ambiente deposicional, limitando-se a lentes descontínuas e a preenchimento de canais, abandonados pela rápida migração do sistema. Tais depósitos finos muito raramente são poupados pelos ciclos subseqüentes, sendo na sua maioria erodidos e resedimentados como intraclásticos argilosos. Os silcretes/calcretes/palicretes são um reflexo das condições de aridez do clima durante a deposição. Estas rochas se desenvolvem em consequência da diagenese rasa sobreimposta aos arenitos e mais raramente aos siltitos. Esta foi por vezes tão intensa, que substituiu todo o arcabouço da rocha, formando níveis de sílica e calcário praticamente puros.

AGRADECIMENTOS
Este trabalho contou com a colaboração do CNPq, DEGEO/EM/UFOP, Projeto Dinossauros do Brasil, Centro de Pesquisas Paleontológicas Lewllyn Ivor Price e da Sociedade de Pesquisas Geológicas-SPG.
BIBLIOGRAFIA

LEGENDA

CALCARETES/SILCRETES/PALCRETES

SILTITOS

ARENITOS COM ESTRATIFICAÇÃO
CRUZADA ACANALADA

ORTOCONGLOMERADOS

CONTATOS

ABRUTO

TRANSICIONAL

EROSIVO

Fig. 3 - Perfil esquemático mostrando os ciclos de granodecrescência ascendente típicos do Mbro Serra da Galga.
CONTRIBUIÇÃO À PETROGRAFIA DE CONGLOMERADOS E ARENITOS DO MEMBRO SERRA DA GALGA (FORMAÇÃO MARILIA), CRETÁCEO DA BACIA DO PARANÁ

MARIÂNGELA G. PRAÇA LEITE - UFOP
NEWTON SOUZA GOMES - UFOP
MARIA DO CARMO SANTOS - UFOP
A. D. OLIVEIRA - UFOP

INTRODUÇÃO

Tratam-se de arenitos, arenitos congloméráticos e conglomerados depositados em um sistema fluvial, do tipo entrelaçado (braided), com depósitos de canais e barras amalgamados, apresentando ciclos de granodrescência ascendente (Fáiltaro & Barcelos 1991; Barbosa 1993; Santos 1994; Santos et al. 1994).

CONGLOMERADOS

A partir de características petrográficas e texturais pode-se distinguir, dentre as rochas do Mb. Serra da Galga, dois tipos de conglomerados: um ortoconglomerado, que ocorre associado aos ciclos de granodrescência ascendente supracitados, e um pararconglomerado.

Os ortoconglomerados apresentam uma matriz arenosa incipiente e estão frequentemente cimentados por carbonato. Tratam-se de conglomerados polimétricos, sendo os clastos subangulosos à subarredondados, de baixa esfericidade, com diâmetros de até 10 cm. Predominam os seixos de quartzo, sílex e quartzo, sendo este último de dois tipos, um dos quais miliolizado. Ocorrem também seixos de rochas ígneas básicas (basalto), outras rochas metamórficas (xistos) e rochas sedimentares (calcretas, silcretas, palicretas e intraclastos de argila). São rochas em geral maciças, mostrando-se raramente estratificadas.

Os pararconglomerados apresentam uma matriz com granulometria variando de areia média à argila, mal selecionada, com grãos subarredondados a subangulosos. São conglomerados polimétricos, com seixos e grânulos dispersos aleatoriamente na matriz, sendo estes clastos petrologicamente equivalentes aqueles dos ortoconglomerados. Tratam-se de rochas avermelhadas e bastante friáveis.

ARENITOS

Os arenitos apresentam granulometria variável (grossa a fina), predominando as areias médias. Tratam-se de depósitos heterogênicos, mal selecionados, com grãos subangulosos a subarredondados, de baixa esfericidade. Segundo a classificação de Folk (1974), são rochas submaturas e imaturas. O empacotamento é frouxo com grãos flutuantes, raros contatos tangenciais e retos.

Segundo o diagrama de Mc Bride(1963), os arenitos do Membro Serra da Galga podem ser classificados como subarenitos, subarcoseos líticos e litonelitos, predominando os primeiros.

Arcabouço

O quartzo é o constituinte detritico dominante ocorrendo nas formas mono e policristalina, sendo que o quartzo monomineralico geralmente apresenta extinção ondulante. Representam 26% e 6%, respectivamente, do volume da rocha.

Entre os feldspatos, a microclina predomina (2,5%) sobre o ortoclássio (0,5%) e o plagioclássio (1%). A alteração desses grãos é intensa variando em intensidade e forma de acordo com a composição do mineral (os plagioclásios são os mais alterados).

Dentre os fragmentos líticos, as rochas ígneas são representadas por fragmentos de basaltos (1%), que se encontram muito alterados, intensamente substituídos por argilominerais.

Os fragmentos de rochas metamórficas (5%) são compostos por xistos e quartzitos, sendo este último é o mais expressivo, ocorrendo sob duas formas: distintas; um quartzito fino a médio, com cristais bem formados e outro, também fino a médio, porém miliolizado.

Já entre os fragmentos de rochas sedimentares (3%) aparecem arenitos (provavelmente da Fm. Botucatu), calcretas, silcretas, palicretas e bolas de argila. Com excessão dos arenitos, todos os outros são oriundos da própria Fm. Marília, derivados do retraibalhamento de crostas e níveis argilosos por fluxos subsequentes.

Os minerais acessórios (3%) são representados por micas (biotita, muscovita), anfibólios, epidoto, titana, turmalina, granada, rutilo e minerais opacos.

São comuns os fragmentos de ossos e plantas.

Cimentos

Os arenitos Serra da Galga são, em geral, bem cimentados, com os cimentos constituindo até 40% do volume da rocha. Destacam-se os carbonatos (calcita e dolomita), sílica (opala, calcedônia e quartzo microcristalino), óxido de ferro e os argilo-minerais
(grupo da paligorskita). A cimentação, ao que parece, foi relativamente precoce, o permitindo a permanência do empacotamento frouxo.

Matriz

Em virtude do próprio sistema fluvial braided, a matriz deposicional é rara nestes arenitos. As partículas de tamanho argila que ocorrem nesta rochas tem sua origem relacionada a processos diagenéticos, como é o caso das argilas mecanicamente infiltradas (1%) e da chamada "pseudomatriz" (0,5%), derivada da compactação de intraclastos argilosos.

Porosidade

A maioria dos arenitos apresentam porosidade em torno de 6% do volume total da rocha, distribuída de maneira aleatória. A porosidade é tipicamente secundária, dos tipos: intergranular, intragranular; módica e de fratura, predominando a primeira.

AGRADECIMENTOS

Este trabalho contou com a colaboração do CNPq, DEGEO/EM/UFGO, Projeto Dinossauros do Brasil, Centro de Pesquisas Paleontológicas Lewlyn Ivor Price e da Sociedade de Pesquisas Geológicas-SPG.

BIBLIOGRAFIA

ESTUDO DIAGENÉTICO PRELIMINAR EM ARENITOS DO MEMBRO SERRA DA GALGA, CRETÁCEO DA BACIA DO PARANÁ

MARIÂNGELA G. PRAÇA LEITE - UFOP
NEWTON SOUZA GOMES - UFOP
MARIA DO CARMO SANTOS - UFOP
A. D. OLIVEIRA - UFOP

INTRODUÇÃO

Até o início da década de setenta, muito pouco se conhecia sobre diagenese. Com as crises do petróleo e a elevação dos preços vividas nestes anos, tornou-se necessária a descoberta e a recuperação de maiores volumes de hidrocarbonetos. Foi nesta época, que as companhias de petróleo passaram a adotar a diagenese como uma análise obrigatória. No Brasil não foi diferente, porém apenas as bacias costeiras, principais alvos de exploração, tiveram suas sequências descritas e analisadas em termos de diagenese. Já nas bacias interiores, raros foram os trabalhos neste sentido. O Membro Serra da Galga (bacia do Paraná) não foi exceção.

O Membro Serra da Galga, no topo, e o Membro Ponte Alta, na base, compõem a Formação Marília na Região de Uberaba. De idade cretácia superior, a Formação Marília corresponde à porção superior do Grupo Bauru no Triângulo Mineiro (Fulfraro & Barcelos 1991). Composto basicamente por arenitos e conglomerados, o Membro Serra da Galga tem sua origem relacionada a um sistema fluvial braided, depositado sob um regime de clima árido a semi-árido (Barbosa 1993; Santos 1994; Santos et al. 1994).

METODOLOGIA

O estudo diagenético nos arenitos do Membro Serra da Galga foi efetuado utilizando-se diversas amostras de superfície, coletadas ao longo de perfis na região de Uberaba. Algumas destas amostras foram também selecionadas para análises de difratometria de raios-X, a fim de se determinar com maior precisão os argilos minerais existentes nestas rochas.

EVENTOS DIAGENÉTICOS

Através de relações petrográficas observadas nas lâminas delgadas, pode-se determinar a presença de diversos eventos diagenéticos, principalmente eodiagenéticos. Tais processos ocorridos na chamada eodiagenese (Schmidt & McDonald 1979), primeira fase da diagenese, sofrem uma influência direta das águas superficiais, e por conseguinte, do regime climático reinante na região de deposição. Estes eventos eodiagenéticos tiveram papel preponderante no processo de recuperação de maiores volumes de hidrocarbonetos. No Brasil não foi diferente, porém apenas as bacias costeiras, principais alvos de exploração, tiveram suas sequências descritas e analisadas em termos de diagenese. Já nas bacias interiores, raros foram os trabalhos neste sentido. O Membro Serra da Galga (bacia do Paraná) não foi exceção.

O Membro Serra da Galga, no topo, e o Membro Ponte Alta, na base, compõem a Formação Marília na Região de Uberaba. De idade cretácia superior, a Formação Marília corresponde à porção superior do Grupo Bauru no Triângulo Mineiro (Fulfraro & Barcelos 1991). Composto basicamente por arenitos e conglomerados, o Membro Serra da Galga tem sua origem relacionada a um sistema fluvial braided, depositado sob um regime de clima árido a semi-árido (Barbosa 1993; Santos 1994; Santos et al. 1994).

METODOLOGIA

O estudo diagenético nos arenitos do Membro Serra da Galga foi efetuado utilizando-se diversas amostras de superfície, coletadas ao longo de perfis na região de Uberaba. Algumas destas amostras foram também selecionadas para análises de difratometria de raios-X, a fim de se determinar com maior precisão os argilos minerais existentes nestas rochas.

EVENTOS DIAGENÉTICOS

Através de relações petrográficas observadas nas lâminas delgadas, pode-se determinar a presença de diversos eventos diagenéticos, principalmente eodiagenéticos. Tais processos ocorridos na chamada eodiagenese (Schmidt & McDonald 1979), primeira fase da diagenese, sofrem uma influência direta das águas superficiais, e por conseguinte, do regime climático reinante na região de deposição. Estes eventos eodiagenéticos tiveram papel preponderante não só pela sua grande extensão, como também pela quase total inibição de processos mesodiagenéticos, uma vez que obliteraram praticamente toda a porosidade primária das rochas.

No caso dos arenitos Serra da Galga, o clima árido imprimiu características próprias nos processos de diagenese, devido não só a forte evaporação como também ao regime de chuvas torrenciais, com enxurradas cuja energia ia se dissipando gradualmente. Isto fica bem claro na medida que analisamos os eventos diagenéticos reconhecidos nas lâminas, e que são descritos a seguir:

Infiltração mecânica de argilas

Este foi, sem dúvida, o primeiro processo diagenético destas rochas. As argilas ocorrem como cutículas envolvendo os grãos e mais raramente como massas flocculadas que obliteraram praticamente toda a porosidade. Este material é introduzido no sedimento, já depositado, por águas de enxurradas episódicas, ricas em material fino, que com a perda de energia acabam depositando o sedimento em suspensão (Walker et al. 1978).

As análises de difratometria de raios-X mostram uma predominância de ilitas e intratratificados I/S, provavelmente originados a partir da transformação da esmectita originál (Boles & Frank 1979). Transformação esta relacionada com o aumento de temperatura e pressão ocasionados pelo soterramento a que foram submetidas estas rochas.

Calcrites/palícretes/dolocretes

Trata-se do processo diagenético mais importante, sendo o de maior extensão volumétrica e areal.

A precipitação de cimentos precoces, com a formação de crostas e paleossolos, constitui um evento comum em sedimentos de regiões áridas, como reflexo das condições climáticas, que promovem altas concentrações superficiais de fons. Esta precipitação tem como efeitos principais a obliteração da porosidade primária e consequente redução da compactação e demais processos diagenéticos. Foi graças a esta cimentação que o empacotamento dos arenitos Serra da Galga pode permanecer frouxo. Este processo foi por vezes tão intenso, que substituiu
quase que completamente os grãos do arcabouço, deixando apenas “fantasmas”.

Dentre os cimentos precoces, destacam-se a calcita (calcretes), a paligorskita (palcretes) e a dolomita (dolocretes), esta última em menor escala.

cimento de óxido de ferro

Ocorre de forma localizada, como cutículas castanho-avermelhadas, envolvendo os grãos detriticos. Parece, por relações petrográficas, ter tido duas gerações: uma precoce, anterior à cimentação carbonática eoidigenética; outra, tardia, já telodiagenética, quando do soerguimento das rochas.

Compactação

Tanto a compactação mecânica como a química foram pouco atuantes nestes arenitos, em função da intensa cimentação precoce que ‘segurou’ o arcabouço. É comum de se encontrar, inclusive, palhetas de micas e intraclastos argilosos sem qualquer vestígio de deformação.

Silicificação

Bastante difundida nestas rochas, a sílica, por vezes, substitui totalmente alguns níveis, formando os chamados silcretes. Ocorre nas formas de opala, calcédonia e quartz microcristalino; a difratometria de raios-x acusou, inclusive, a presença de opala CT.

Notou-se, claramente, a tendência da sílica de substituir a calcita e a dolomita precoces, principalmente nas porções inferiores do Membro Serra da Galga, próximas ao contato com o Membro Ponte Alta.

É provável que as soluções ricas em sílica e responsáveis por essa cimentação sejam oriundas de porções mais profundas da coluna sedimentar, em especial de locais onde houve uma intensa cimentação precoce por calcita/paligorskita/dolomita, responsável pela dissolução de grãos de aluminosilicatos do arcabouço e liberação de fons.

Calcita eoidigenética

Rara, aparece preenchendo fraturas, juntamente com a barita. São cristais grandes, bem formados, em tudo diferente da calcita eoidigenética. Destaca-se também por apresentar uma certa catodoluminescência, o que não ocorre com a calcita precoce.

Porosidade secundária

A porosidade média destas rochas é de 6%, sendo nitidamente secundária. É provável que grande parte dela esteja relacionada a processos de lixiviação telodiagenéticos.

AGRADECIMENTOS

Este trabalho contou com a colaboração do CNPq, DEGEO/EM/UFOP, Projeto Dinossauros do Brasil, Centro de Pesquisas Paleontológicas Lewllyn Ivor Price e da Sociedade de Pesquisas Geológicas-SPG.

BIBLIOGRAFIA

ASPECTOS GEOLOGICOS DO DEPOSITO AURIFERO DE BICO DE PEDRA, GREENSTONE BELT RIO DAS VELHAS, QUADRILATERO FERRIFERO, MG

RICARDO P. BORBA - DMG/IG/UNICAMP
CLAUDINEI G. DE OLIVEIRA - DEEGEO/EM/UFOP
ISSAMU ENDO - DEEGEO/EM/UFOP
BERNARDINO R. FIGUEIREDO - DMG/IG/UNICAMP

INTRODUÇÃO

O depósito aurífero de Bico de Pedra, anteriormente descrito por Guimarães (1944) e Borba (1993), está situado no Quadrilátero Ferrifero, no domínio do Sinclinal Dom Bosco (Chemale Jr. et al., 1991), sendo hospedado em rochas do Greenstone Belt Rio das Velhas. Em termos geográficos, o depósito localiza-se ao sul do Distrito de Rodrigo Silva, no município de Ouro Preto, M.G.

UNIDADES LITOLÓGICAS

Na área mapeada foram individualizados três domínios lito-estruturais. O domínio Nova Lima (DNL) é constituído por rochas metavulcânicas de composições ultramáficas e máficas/intermediárias, e por metassedimentos clásticos e químicos. Nas rochas desse domínio o metamorfismo regional atingia condições de fácies xisto-verde. O domínio Piracicaba é formado por metapelitos, enquanto o domínio Itacolomi (DI) é composto por quartzitos finos a metaconglomerados. Entretanto, as sondagens foram realizadas em rochas intrusivas de natureza ácida e foram indistintamente associadas às rochas do DNL e do DI. Os contatos entre os domínios são marcados por falhas de corte de rochas de corte direcionais (Fig. 1). O Depósito de Bico de Pedra está hospedado nas rochas metavulcânicas de composição ultramáfica e máfica/intermediária do DNL.

ARCABOUÇO TECTÔNICO

A região de Bico de Pedra está inserida dentro do sistema de corte de rochas do Nuppe do Itacolomi, no centro do Sinclinal Dom Bosco (Chemale Jr. et al., 1991). Outra feição regional que merece destaque é o sistema de corte de rochas da Fundação Cambotas (Endo & Fonseca, 1991), que controla o contato entre o Supergrupo Minas e o Grupo Nova Lima, a leste e a oeste.

Foi possível a identificação de um evento de deformação compressiva heterogênea, não coaxial, que se processou em regime dúctil a rúptil, em três fases distintas. Na primeira fase, houve o desenvolvimento de zonas de cisalhamento ao longo de falhas reversas, com sentido ESE-WNW, que geraram o corte dos quartzitos do DI sobre as rochas do DNL. Nessa fase foi gerada uma foliação milonítica penetrativa, \(S_m \), que possui inclinações distintas dentro desse domínio (Fig. 1). A ilha de rocha mineral \(L_m \) é constante com inclinação de 110°/90°. A segunda fase é caracterizada por falhas "direcionais" saindo para a direita, que permitiram um escape de massa lateral no sistema de corte de rochas, com inclinações de 030°/51°, e transportes do ESE-WNW. Uma feição expressiva dessa fase foi a penetração de uma cunha de quartzitos do DI nas rochas do DNL. A terceira fase, incipiente, gerou apenas uma clivagem de corte de rochas do DNL. A foliação direcionais, \(S_{c3} \) (300°/85°), e uma foliação de corte de rochas, \(L_{c3} \) (015°/21°), ambas desenvolvidas nas rochas pelágicas de todos os domínios.

ALTERAÇÃO HIDROTHERMAL E MINERALIZAÇÃO

No contato entre o DNL e DI, onde situa-se o depósito de Bico de Pedra, ocorreram processos de alteração hidrotermal caracterizados em dois estágios. Na fase inicial houve cloritação generalizada e intensa das rochas, seguida pelas fases intermediárias e avançada, ouvindo a ação de carbonatação, potasificação e sulfetação nos domínios mineralizados (Tabela 1). O processo de alteração hidrotermal atingiu as rochas, da Unidade Ultramáfica-Máfica-Intermediária, de modo diferenciado, sendo controlado principalmente pelas propriedades reológicas e composição química das rochas (Borba, 1993).

O depósito ocorre em bandas concordantes com a foliação \(S_m \), que estão associadas com as fases de alteração hidrotermal das encaixantes (Tabela 1). O controle da mineralização foi litoestructural. Os milonitos serviram como conduto para a percolação de fluidos mineralizados, e as rochas de composição máfica/intermediária proporcionaram as melhores condições reológicas para a geração das bandas. Além disso, a composição química dessas rochas, ricas em

REFERÊNCIAS BIBLIOGRÁFICAS

GUIMARÃES, D. - 1944. - Jazida de minério auto-cupro-antimonífero de Bico de Pedra, Rodrigo Silva, Município de Ouro Preto. DNPM, avulso 59, R.J., pp 1-27.

Tabela 1: Minerais gerados nos processos de metamorfismo regional (Veira, 1988), alteração hidrotermal e mineralização, atuantes em rochas da Unidade Metavulcânica Ultramáfica e Máfica-Intermediária (domínio Nova Lima). Abreviaturas: Alb-albita; Anf-anfibólio; Asp-arsenopirita; Au-ouro; Bi-bísmuto metálico; Biot-biotita; Cb-carbonato; Cl-clorita; Cp-calcopírita; Gw-galena; Ppi-pirita; Py-pirita; Qtz-quartzos; Ser-sericita; Serp-serpentina; Sp-esfalerita; Tlc-talcos (Modificado de Borba, 1993).

<table>
<thead>
<tr>
<th>MET, REGIONAL</th>
<th>CB-Cl-xisto</th>
<th>Cl-Ch-Tlc-xisto</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERAÇÃO HIDROTERMAL INICIAL (CLORITIZAÇÃO) / 1ª FASE DE MINERALIZAÇÃO</td>
<td>Epid, Anf, Alb, Ob, Cl, Qtz</td>
<td>Po - Cl - Qtz</td>
</tr>
<tr>
<td>ALTERAÇÃO HIDROTERMAL INTERMEDIÁRIA / 2ª FASE DE MINERALIZAÇÃO</td>
<td>Py - Po - Asp - (Au)</td>
<td>Ser - Qtz - Cb</td>
</tr>
<tr>
<td>ALTERAÇÃO HIDROTERMAL AVANÇADA, (POTASSIFICAÇÃO E CARBONATAÇÃO) / 3ª FASE DE MINERALIZAÇÃO</td>
<td>Cp - Sp - Gw - Bi - (Au)</td>
<td>Biot - Cb</td>
</tr>
</tbody>
</table>

LEGENDA

- **Domínio Itacolomi**
 - Quartzo-flias e Metaconglomerados
- **Domínio Piracicaba**
 - Quartzo-Sericita-Filito
- **Domínio Nova Lima**
 - Unidade Metavulcânica Ultramáfica e Máfica-Intermediária
 - Clorita-Carbonato-Talc-Xisto e Carbonato-Clorita-Xisto com Plagiocládio
 - Carbonato-Talc-Xisto
 - Unidade Metassedimentar Clástica e Químico
 - Quartzo-Sericita-Filito
 - Clorita-Quartzo-Xisto com Biotita e quartzo-Muscovita-Xisto com Biotita, Clorita e Plagiocládio
- **GRUPO CARAÇA**
 - Quartzo-fitas
 - **Contato litológico**
 - Faixa de Gm, **Zona de Cisalhamento Obliquo**
 - Linhagem Mineral Lm, **Zona de Cisalhamento Reverso**
 - **Bordas mineralizadas**
 - **Linhaentos**

Figura 1: Mapa Geológico da região de Bico de Pedra, modificado de Borba(1993).
SOBRE A DEFINIÇÃO DO TERMO JACUTINGA - SÍTIO DE MINERALIZAÇÃO AURIFERA

A. RAPHAEL CABRAL - DMG/IG /UNICAMP (bolsista de mestrado, CNPq)
F.R.M. PIRES - Departamento de Geologia/UFRJ

ABSTRACT

In the geological literature of the Quadrilátero Ferrífero there have been different concerns upon the definition of jacinthia. Initial mining operations worked astonishingly high grades of gold last century in jacinthia, a type of gold mineralization hosted by Lower Proterozoic banded iron-formation (itabirite).

INTRODUÇÃO

"Si cada jazida de ouro em Minas tivesse um fôco de luz; si percorressemos a zona aurífera do seu território, através do espaço, teríamos a impressão original de dois céus: um, a aboboda celeste que nos cobre; outro, o terreno, brilhantemente iluminado, do rico e vasto solo miniero". Certamente, muitos dos focos de luz a que se refere Ferraz (1928) são dados pelas inúmeras lavras que outrora se processaram nos itabiritos do Quadrilátero Ferrífero. Somente uma breve apreciação dos mapas contidos em Ferrand (1894), Scott (1902) e Bensusan (1929) se faz suficiente para vislumbrar-se a onipresença das mineralizações de ouro nos itabiritos.

Sua notoriedade não reside exclusivamente na ubiquidade, mas na relevância econômica que tiveram no passado. Grandes quantidades de ouro foram extraídas através de operações de lavra, como aquela da mina de Gongô Socó que, em trinta anos de atividade (1826-1856), produziu 12.887 Kg de ouro (Henwood 1871).

No passado, diferentes conotações eram encerradas no termo jacinthia. Como há pouco menos de uma década retomou-se a exploração do minério aurífero da jacinthia (Andrade & Leão de Sá 1990) das minas de Cauê e Conceição, em Itiba, pela Companhia Vale do Rio Doce (CVRD), e face ao potencial do Quadrilátero Ferrífero para novas jazidas de ouro em itabiritos, crê-se oportuna uma discussão sobre o termo jacinthia.

O TERMO JACUTINGA

Por xista hematítico foi designada (Eschwege 1833) formação aurífera composta de hematita com quartzo, de estrutura xistosa, onde as camadas auríferas eram friáveis, com quartzo colorido pelo óxido de ferro, ou, também, com camadas de jacinthia. Assim, uma das "formações" mais ricas em ouro, escrevia Hartt (1870), "eram certos minérios de ferro conhecidos pelos nomes de itabirito e Jacinthia". À jacinthia conferiam-se descrições pouco precisas. Consideravam-na Huesser & Claraz (1860), por exemplo, uma variedade pulverulenta do itabirito, ou como "couches friables de sable brillant composé de quarte à grains fins et de fer spécialement" (Ferrand 1894). Tinham-na Moraes & Barbosa (1939), de maneira semelhante, como "minério decomposto, com buchas de quartzo branco e hematita espejante perfeitamente fresca". Quase tudo isso foi, era enfatizado o estado físico da rocha, de tal sorte que Gorceix (1881) salientava categoricamente que "em certos logares são elles (ie. os itabiritos) arenosos, friáveis e conhecidos vulgarmente pelo nome de jacinthia".

Em contraste, Hussak (1906) enfatizou que "como jacinthia devem ser considerados os depósitos em forma de nucleos e faixas, no itabirito, sempre estreitos com 50 centímetros de espessura apenas e que se caracterisam por um enorme teor de ouro, que em geral falta ao resto do itabirito, por completa ausência de pyrites e pela ocurrencia de nucleos, ora taldocos, ora puramente argilosos, acompanhados de pyrolusito pulverulento". De maneira análoga, Henwood (1871), a quem coube pormenorizar descrições, distinguiu a formação ferrífera em dois grupos: um, o itabirito, onde o ouro é dificilmente encontrado; e outro, a jacinthia, a principal hospedeira das porções mais ricas. Também Scott (1902) assinalou que "this iron formation (itabirite) has been proved to be slightly auriferous in many places, but the gold has only been found in payable quantities in the bands of sand micaceous iron ore known as jacinthia".

Tem-se aqui, portanto, consignado a disseminância das conotações do termo jacinthia: aplicávamos para designar as partes desagregadas, friáveis e pulverulentas dos itabiritos; ou restringiam-nos tão somente aquelas porções auríferas. Motivado por esta questão de nomenclatura, Freyberg (1932) sugeriu uniformidade no emprego dos termos itabirito e jacinthia, propondo que o termo jacinthia fosse restrito à fácies extremamente friável da rocha, sendo enfatizado, ao mesmo tempo, a fácies compacta de itabirito.

Na literatura é frequente encontrar-se "jacinthia" na terminologia dos minérios de ferro. Guimarães (1961) conferiu à jacinthia a definição de "minério friável ou arenoso, constituído de hematita granular e lamelar, com teor de quarto variável. (...) O teor em ferro varia de 40 a 60 % de Fe (...). Não há diferença
entre este tipo e do de "minério brando". Quando este contivesse ouro, adicionava-se o adjetivo "aurífero". Dessa maneira, Oliveira (1931) sugestionou o aproveitamento do minério de ferro concomitante à exploração do ouro da jacutinga "aurífera".

Recentemente, Siegers & Renger (1985) aludiram brevemente ao depósito de Gongo Socó sem, no entanto, definir propriamente o termo jacutinga. Ainda sobre Gongo Socó, Ladeira (1991) considerou como rocha hospedeira do minério aurífero o itabirito manganesífero pulverulento. No distrito de Mariana, Vial (no prelo) fez alusão à mineralização aurífera em "soft itabirite" (jacutinga), constituída por manganês, caulinita, espicularita, quartzo, goethita e muscovita (minas de Marquinhí); e referindo-se ao filão Jopling, mina de Passagem, Heineck et al. (1986) comentaram sobre "níveis altamente auríferos em meio aos itabiritos friáveis (jacutingas)". Para Sá & Borges (1991) o ouro das minas de Caéu e Conceição, Itabira, está associado a um tipo de minério de ferro, a jacutinga. Por fim, Olivo (1994) definiu como uma formação ferrífera fácies óxido tipo Lago Superior hidrotermalmente alterada, apesar de seu modelo genético considerar que a jacutinga de Caéu teria sido derivada de itabirito dolomítico.

Como colocado por Dorr & Barbosa (1963), o termo jacutinga não deve ser utilizado em uma descrição científica sem que seja precisamente definido. É portanto esperado, diante da retomada da exploração do ouro em itabiritos, que o emprego da designação jacutinga seja apreciado. Assim, para fins descritivos, propõe-se seguir a recomendação de Harder & Chamberlin (1915) para que o termo jacutinga seja limitado à definição de Hussak (1906), nomeando tão somente aquelas porções auríferas dos itabiritos. Entendemos que o termo jacutinga também deve ser mantido para designação formal deste tipo de depósito aurífero. Para isso concorrem alguns pontos particulares: natureza friável ou pulverulenta da formação ferrífera (itabirito e/ou hematita), caráter paladado do ouro, associação mineral com quartzo, talco, caulinita e óxidos de manganês, e ausência de sulfetos.

AGRADECIMENTOS

Os autores, em especial A. Raphael Cabral, externam seus agradecimentos à Sra. Maria da Glória R.S. Araújo (BIBEM/UFOP) por sua inestimável solicitude na obtenção dos trabalhos antigos.

REFERÊNCIAS

CONTRIBUIÇÃO AO ESTUDO ESTRUTURAL E CINEMÁTICO DE METASSEDIMENTOS CORRELACIONÁVEIS AO GRUPO SÃO JOÃO DEL REI NA REGIÃO DE IJACI, NORTE DE LAVRAS, MG

NOLAN MAIA DEHLER - IG-USP (Pós-graduação)
RÔMULO MACHADO - IG-USP (Pesquisador do CNPq)
ISSAMU ENDO - DEGEOP/UFOP
MATEUS DELATIM SIMONATO - IG-USP (Graduação)

Os estudos estruturais (geométrico e cinemático) realizados na região de Ijaci, norte de Lavras, mostram a existência de uma sequência de rochas metassedimentares correlacionáveis ao Grupo São João del Rei, constituída por uma unidade basal de metacalcáreos e uma unidade de topo constituída por xistos e quartzitos interesтратificados (Figs. 1 e 2). Estas unidades foram definidas por Ebert (1984) como Formações Barroso (base) e Macaíba (topo), ambas posicionadas na parte superior do citado Grupo. O autor assinala presença de deformação e recristalização (filonítica) mais fortes na unidade de topo do que na unidade basal. Tais unidades repousam em discordância angular sobre rochas granito-gnásicas do embasamento.

Os metassedimentos são caracterizados por uma foliação principal com mergulho suave para sul, contendo uma orientação de estiramento mineral dip com caiamento para SSE. A esta foliação associam-se estruturas tipo S-C, dobramentos assimétricos abertas a fechadas, apertadas e isolotinas, do tipo infradip, incluindo ainda possíveis dobramentos em bainha “shelt folds”. Este conjunto de estruturas acha-se relacionado a uma deformação cisalhante, não-coaxial, com movimentação cinemática (de topo) para NNW (Fig. 2). Estas dobragens são mais frequentes nos domínios carboníticos, especialmente em níveis onde ocorrem finas intercalações de metamarcas. São ainda observadas na foliação principal (superfície-C) estrías de falha com cinemática similar ao das estruturas acima, sugerindo permanência do mesmo vetor cinemático durante os regimes de deformação dúctil e rupício.

Registram-se, também, bandas de cisalhamento antiótico ao cisalhamento principal, de caráter extensional, com rebaixamento do bloco sul. Estas bandas de cisalhamento são mais penetrativas nos níveis pelíticos, sendo em geral ausentes nos níveis arenosos e mais raras nos carboníticos. Tais estruturas podem estar relacionadas à deformação cisalhante principal ou mesmo serem relacionadas aos eventos deformacionais tardios. O desenvolvimento da foliação principal ocorreu em condições metamórficas da facies xisto verde baixa, tendo alcançado a zona da biotita. As parâgèneses desenvolvidas nas superfícies S e C ocorreram aparentemente sob as mesmas condições de temperatura e pressão.

Esta foliação principal acha-se afetada por dobras tardias com orientação axial aproximadamente E-W e N-S. As primeiras são dobragens em geral abertas, com superfície axial subvertical, responsáveis pela estrutura sinformal em mapa (Fig. 2); as últimas são suaves e, raramente, ocorrem na escala de afloramento. Em ambos os casos não houve desenvolvimento de foliação plano axial. Tais estruturas são truncadas por zonas de cisalhamento dúctil/ruptí fees de alto ângulo, com orientação NNE. A geometria das dobragens E-W é compatível com o mesmo vetor cinemático que gerou à foliação principal, porém, num nível estrutural mais raso. Cabe, ainda, mencionar que nas rochas do embasamento são registrados os mesmos trends estruturais da cobertura, porém de idades mais antigas, sugerindo, portanto, um controle da geometria do embasamento na deformação da cobertura.

Estas estruturas tardias possuem a mesma orientação geométrica das estruturas regionais encontradas no domínio da Faixa Alto Rio Grande, principalmente entre as regiões de Carrancas e Luminárias, onde as estruturas D3 descritas por Trouw e colaboradores, em vários trabalhos, correspondiam às estruturas E-W aqui referidas. Além disso, são ainda registradas estruturas N-S que se superpõem às estruturas anteriores.

O contato entre os metassedimentos e o embasamento na região, embora não tenha sido ainda observado, parece ser de natureza tectônica, sugerindo uma aloctonia para norte das rochas da cobertura, pois as diferenças de ducibilidade entre as duas unidades litoestructuralis, juntamente com a deformação cisalhante impresa nos metassedimentos, faz supor um descolamento basal da cobertura.

BIBLIOGRAFIA

EBERT, H. - 1984 - Aspectos principais da geologia da região de São João Del Rei, Estado de Minas Gerais & Os Paraibudes entre São João Del Rei (MG) e Itapica (SP) e a bifurcação entre Paraibudes e Arauidês (in memoriam). Publ. n° 12, SBG, SP, 114p.
Fig. 1 - Esboço Estrutural da borda Sul do Cráton do São Francisco (CSF), da Faixa Alto Rio Grande (FARG) e da Conha de Guaxupé (CGXP) (modificado de Schapollenhaus et al. 1984). GPA - Grupo Andrelândia; GSJ - Grupo São João Del Rei; CAP - Complexo Amparo; SGM - Supergrupo Minas; LA - Lavras; SJD - São João Del Rei; VG - Varginha; LB - Limboli; e - Vetor cinemático principal da CGXP.

Fig. 2 - Esquema litoestrutural da Área de Ijaci. FB - Formação Barrosa; FM - Formação Macaia; OE - Ortoplainais do embasamento; IJ - Ijaci; B - Falha de empurrão (discolamento); C - Traço axial de sinforme; D - Atitude da foliação principal; E - Atitude da lineação de estrutamento mineral; F - Contato; G - Falha indiscriminada; H - Vetor cinemático principal na área.
APLICAÇÃO DE ELEMENTOS ARQUITETURAIS NA PROSPECÇÃO DE DIAMANTES NOS CONGLOMERADOS POLIMÍTICOS DE ROMARIA NO TRIÂNGULO MINEIRO

PAULO DIAS FERREIRA JÚNIOR - DEGEO/EM/UFOP (Mestrado)
PAULO DE TARSO AMORIM CASTRO - DEGEO/EM/UFOP
WILSON JOSÉ GUERRA - DEGEO/EM/UFOP

INTRODUÇÃO

Este trabalho apresenta resultados referentes à análise dos conglomerados polimíticos diamantíferos da Formação Uberaba (Cretáceo Superior do Grupo Bauru, da Bacia do Paraná), utilizando-se a técnica de elementos arquiteturais e da associação de fácies. O objetivo principal é caracterizar a distribuição espacial e sedimentológica destes depósitos.

MÉTODOS

A definição das litofácies seguiu o procedimento padrão, individualizando-se corpos sedimentares com características específicas (tais como geometria, litologia, granometria e estruturas sedimentares), que os distinguem de outros pacotes rochosos. Isto feito, analisou-se os processos formadores destas fácies e suas associações, que permitiram a determinação dos ambientes deposicionais que as geraram.

A análise dos elementos arquiteturais segue a metodologia proposta por Silva (1988a, b) para sistemas fluviais, onde a partir de fotomosaicos são traçadas e identificadas superfícies hierárquicas, que possibilitam a separação de unidades tridimensionais geneticamente relacionadas. Após este procedimento, deve-se voltar ao campo, documentar as litofácies, coletar a direção de paleocorrente (dada por estratos cruzados) e das atitudes das superfícies hierárquicas, sendo imprescindível a exata localização destas medidas.

Litofácies e Processos

Cmt: conglomerado polimíctico clasto-suportado constituido de fragmentos de arenito da Formação Botucatu, metabasitos, quartzoitos, xístos, basalto e quartzo. Os matarizes atingem 55cm e estão distribuídos por todo o intervalo. A matriz argilosa esverdeada é composta por ilita, caulinita e pagelinskita (segundo análises de DRX feitas no laboratório do DEGEO/EM/UFOP). Provavelmente, devido ao avançado grau de alteração, não foram observados fragmentos de rochas vulcânicas alcalinas, frequentemente citadas como uma possível fonte para os diamantes (Feitosa & Svisero, 1984; Svisero & Meyer, 1991). Nenhuma estrutura sedimentar foi identificada, verificando-se apenas, em alguns pontos, uma incipiente graduação com uma diminuição dos clastos para o topo. No geral a disposição destes clastos é caótica, ou com uma organização mínima, podendo muitas vezes se encontrarem subverticalizados.

Cem: conglomerado polimíctico clasto-suportado, com composição mineralógica similar a Cmt, variando apenas o tamanho dos clastos, que aqui podem atingir 15cm. A matriz é silto-arrotosa encontrando-se, localmente, niveis de caulinita. Apresenta uma leve graduação e um ligeiro acamamento, mas ainda predomina uma alta desorganização dos seixos e matarizes.

Ce: conglomerado polimíctico, sustentado por matriz de areia média; os seixos tem a mesma composição mineralógica de Cmt e atingem 6cm. Apresenta estratificação cruzada, seixos orientados e frentes ciclos de granoedrecência ascendente.

Ae: arenito médio com estratificação cruzada de médio porte;

Aba: arenito fino a médio com estratificação cruzada de baixo ângulo (menor que 10º);

App: arenito fino a médio com estratificação plano-paraletal;

S: argilitos e siltitos maciços ou com laminações plano-paraletas, topo ondulado, estruturas de cargas e gretas de contração.

De acordo com a distribuição e associação destes litofácies foi possível individualizar duas unidades, da base para o topo: (a) conglomerados polimícticos clasto-suportados e (b) arenitos finos a grossos
intercalados a conglomerados sustentados por matriz arenosa.

A unidade conglomerática basal é constituída pelas litofácies Cmt e Cme e suas principais características são a base não erosiva (a grande irregularidade basal se deve ao paleo-relevo e não a processos erosivos), falta de estratificação obvia, podendo ser rudemente acamada, estratos com pouca ou nenhuma graduação e clastos suportados. Várias destas características são apontadas por Nemec & Steel (1984) como indicativas de depósitos de fluxo de detritos, com o predomínio de processos subaéreos. Segundo esses autores, quando o fluxo de detritos perde a sua competência uma grande quantidade de água é expulsá das porções inferiores destes depósitos, proporcionando uma diminuição da viscosidade na parte superior do fluxo. Como consequência ocorre uma melhor organização e seleção dos clastos, indicando uma ligeira tendência de canalização dos fluxos relativamente diluídos. Esta é a interpretação para as fácies Cme, que seria fruto do retrabalhamento das fácies inferior (Cmt) por fluxo mais fluidos. De acordo com a distribuição das litofácies Cmt e Cme, este intervalo pode ser subdividido em outros dois: (a) constituído pela litofácies Cmt, denominado pelos garimpeiros da região de “tata”, atinge 3m de espessura e é a principal fonte de diamantes; (b) formado pela litofácies Cme, sobrepõe o pacote anterior ou faz contato direto com o embasamento, alcançando 3m de espessura. Também diamantífera, esta litofácies, é informalmente conhecida como “estrelado” e tem sua importância econômica restrita a pequenos diamantes.

Sobre esta unidade, assentam-se, em contato relativamente plano, níveis conglomeráticos (de até 1,5m) com arenitos intercalados, chamados na linguagem mineira de “secundina” e estéreis em diamantes. Esta unidade apresenta uma sequência de fácies composta por conglomerados (Cm e Ce) intercalados a arenitos (Ae, App, Aba) e pelitos (S). A menor imaturidade textural destas litofácies sugere um fluxo aquoso contínuo e um retrabalhamento mais efetivo destas porções. A espessura dos estratos conglomeráticos ou dos conjuntos de estratos cruzados conglomeráticos fornecem uma indicação aproximada da profundidade da água. Segundo Nemec & Steel (1984), uma dimensão decimétrica a métrica indica um fluxo canalizado mais profundo, como nos canais distributários de leques aluviais.

ANÁLISE DE ELEMENTOS ARQUITETURAIS

Foram individualizadas três macroformas:

A macroforma 1, composta pelas litofácies Cmt e Cme, apresenta uma base irregular resultante do paleo-relevo e topo relativamente plano, dado por uma superfície de 4ª ordem. Poucas são as subdivisões internas, registrando-se apenas superfícies de 2ª ordem (que apesar de irregulares mostram pequena atuação de processos erosivos), que separam as litofácies Cmt e Cme e de 1ª ordem, mais comuns nos pacotes definidos pelas litofácies Cme. Em função destas particularidades, não é possível correlacionar esta macroforma com qualquer uma das propostas por Miall (1988a), existindo apenas uma pequena similaridade com o elemento SG (sediment gravity flows).

A macroforma 2 é formada por um elemento arquitetural que não pode ser diretamente correlacionado a qualquer outro elemento proposto por Miall (1988a). Suas assembléias de litofácies sugere uma associação entre os elementos GB (gravel bars and bedforms - fácies conglomeráticas) e SB (sandy bars - fácies arenosas). Devido, entretanto, ao predomínio das litofácies conglomeráticas, este elemento foi denominado de GB. Superfícies planas, pouco erosivas, de 3ª ordem separam vários corpos tabulares, não sendo observadas margens de canais, enquanto superfícies de 2ª ordem, com pouco sinal de escavação, subdividem as fácies conglomeráticas (Cm e Ce) e arenosas (Ae, Aba, App) intercaladas a pelitos (S). As atitudes destas superfícies apresentam uma baixa dispersão e são as mesmas da direção do fluxo (dado pelos estratos cruzados), o que sugere uma macroforma de acréscimo a jusante, correlacionada à macroforma DA (downstream accretion macroforms de Miall, 1988a).

A macroforma 3 é marcada na base pelo elemento SG, composto pela litofácies Cme. Este elemento, entretanto, tem baixa persistência lateral e é substituído pelo elementos GB, formado pela intercalação de litofácies conglomeráticas, arenosas e pelíticas. O restante desta macroforma assemelha-se em muito com a anterior, com o predomínio de elemento GB. As atitudes das superfícies também são semelhantes sugerindo uma macroforma de acréscimo a jusante, também correlacionada à macroforma DA de Miall (1988a).

DISCUSSÃO E RESULTADOS

De acordo com as informações relativas às assembléias de litofácies e seus processos formadores, admite-se, para a unidade conglomerática basal, definida pela macroforma 1, uma posição proximal de leques aluviais. O motivo da macroforma 1 não encontrar paralelo nas macroformas de Miall (1988a, b) decorre do fato dos trabalhos deste autor terem sido desenvolvidos em sistemas fluviais, sendo difícil a sua aplicação para outros sistemas.

A análise conjunta das macroformas 2 e 3 (Tabela 1) e dos processos formadores das assembléias de litofácies associadas, sugeriu a porção distal de leques aluviais como sendo o locus deposicional do intervalo conglomerático superior, onde o elemento SB, da macroforma 2, significaria pequenos e localizados fluxos de detritos. O caráter tabular dos depósitos conglomeráticos e arenosos (definidos por superfícies de 3ª ordem) auxilia na separação dos ambientes aluviais e fluviais, pois segundo Rust (1979), depósitos conglomeráticos resultantes de um sistema fluvial entrelaçado apresentam superfícies erosivas e geometria lenticular que refletem o efeito do
entrenchamento e avulsão deste sistema, com rápida mudança lateral e abandono de canais, fato que não ocorre no exemplo estudado.

A ausência de retrabalhamento dos conglomerados basais, dos depósitos arenosos e conglomeráticos sobrepostos sugere que a área estava em processo de subsidência, na época de deposição destas unidades, o que não permitiu o retrabalhamento e a conseqüente concentração dos diamantes dos depósitos aluviais inferiores. A constância no paralelismo das medidas de paleocorrente e das superfícies hierárquicas é outro forte indicativo destas condições, pois as macroformas desenvolveram-se sempre para jusante, não existindo sinal de meandramento dos canais ou retrabalhamento dos depósitos.

Conclui-se, portanto, que campanhas de prospecção nos registros aluviais distais e fluviais da Formação Uberaba, segundo os dados obtidos em Romaria, não são recomendadas pois, estes depósitos não são frutos de retrabalhamento dos conglomerados polimícticos diamantíferos basais.

AGRADECIMENTOS

Os autores agradecem à FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais pelo apoio financeiro (Processo 100/92) e à EXDIBRA (Extrativa de Diamantes do Brasil) pelo acesso à sua área de concessão.

Tabela 1: Principais características das macroformas 2 e 3.

<table>
<thead>
<tr>
<th>UNIDADE</th>
<th>FACES</th>
<th>X (n(X))</th>
<th>Y (n(Y))</th>
<th>INTERPRETAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponto 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-DA</td>
<td>Cm, Ac, Aba</td>
<td>277</td>
<td>11</td>
<td>280</td>
</tr>
<tr>
<td>Ponto 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-DA</td>
<td>C, Ae, S</td>
<td>276</td>
<td>11</td>
<td>267</td>
</tr>
<tr>
<td>2-DA</td>
<td>Cme, C, Ae, S</td>
<td>-</td>
<td>-</td>
<td>275</td>
</tr>
</tbody>
</table>

Onze X é vetor médio da direção de paleocorrente; n(X) o número de medidas de paleocorrente; Y o vetor médio das superfícies hierárquicas e n(Y) o número superfícies hierárquicas medidas.

BIBLIOGRAFIA

A INVERSÃO TECTÔNICA NO QUADRILÂTERO FERRÍFERO
MODELOS FÍSICOS

CAROLINE JANETTE SOUZA GOMES - DEGEO/EM/UFOP
JOSÉ ADILSON D. CAVALCANTI - Bolsista PIC/UFOP
GESNER J. I. SANTOS - Bolsista de Iniciação Científica - CNPq

INTRODUÇÃO

Os modelos tectônicos para o Quadrilátero Ferrífero (QF) do final do Arqueano/Proterozóico sugerem, uma extensão crustal seguida por uma inversão (MARSHAK & ALKMIM 1989; CHEMALS Jr. et al. 1991) responsáveis, respectivamente, pela geração i reativação das Bacias Minas e pela tectônica compressional que caracteriza mais intensamente a porção leste da área.

Em presente estudo simulou-se, em caixas de madeira de 60x20(30)x11cm, a inversão no QF, sob diferentes condições de contorno.

EXPERIMENTOS

No primeiro experimento representou-se as rochas infracrustais, os terrenos granito-granássics, através de uma camada irregular de 2,0 a 1,5cm de espessura de silicone especial (produzido por Rhône-Poulenc), de densidade $d=1,16g/cm^3$ e comportamento dúctil. Camadas de areia colorida ($d=1,3g/cm^3$ e granulometria entre 200 e 300µ), simuando as rochas supracrustais, preencheram a caixa até uma altura total de 4,0cm. Calhas de 1cm de profundidade, no silicone, representaram as BSC e BSM. A inversão (35%) gerou: forte espessamento do silicone, nenhuma deformação nas Bacias Minas, falhas de empurrão e de retrocavalgamento nas unidades supracrustais e ascensão do silicone ao longo das falhas (fig. 1). Este experimento demonstrou que a modelagem das infracrustais, inclusive do Complexo Metamórfico do Baçao (CMB), através de silicone, de comportamento newtoniano, não simula de maneira adequada a inversão tectônica no QF.

O segundo experimento simulou extensão e compressão considerando-se apenas a crosta rúptil. Uma camada de reologia plástica, de silicone, constituiu na inversão um descolamento basal dúctil. Nesta caixa representou-se o CMB por um cilindro, de 7,0cm de diâmetro, de isopor, constituído por 5 unidades circulares de 1cm de espessura, frouxamente amarradas entre si. Montou-se um papélão no fundo da caixa possuindo um corte na altura da BSM e do BSC, cuja função era gerar as bacias durante a extensão, uma camada de 0,6cm de silicone, o cilindro de isopor e camadas de 4,0cm de areia colorida, representando o pré-rift ou pré-Minas. Durante a extensão de 5cm (13%), preencheu-se as bacias com areia de diferentes cores. O cilindro de isopor sofreu uma deformação do tipo cisalhamento simples, uma vez que o movimento de sua porção inferior foi maior do que a parte superior. Assim, o CMB impediu a abertura esperada da BSM produzindo, em planta, a geometria circular tão discutida do flanco leste desta bacia. A compressão, de 22%, causou leve basculamento das camadas Minas na BSC não afetando, porém, o sin-rift a W do CMB, na BSM. Formaram-se ainda, no pré-rift, falhas de empurrão e de retrocavalgamento (figs. 2A e B).

No terceiro experimento trabalhou-se apenas com a deformação rúptil. Repetiram-se as condições de contorno descritas em GOMES (1995) para a geração das BSC e BSM e, para o CMB, utilizou-se, como no experimento anterior, um cilindro de isopor acrescido de pequenas esferas de chumbo, para aumentar sua densidade. Realizou-se uma extensão de 32% seguida por uma compressão de 41%. A inversão gerou forte encurtamento no pré-rift e, no interior da BSC, rotação das camadas, agora mergulhando para SE, e reativação de falhas normais (fig. 3A). Na região do CMB e da BSM formaram-se falhas de empurrão e de retrocavalgamento e o cilindro de isopor, o CMB, sofreu uma deformação interna. Na BSM novamente não ocorreu deformação, permanecendo as camadas em posição horizontal (fig. 3B).

CONCLUSÃO

As modelagens confirmaram que a arquitetura da BSC pode ser explicada por uma inversão tectônica, em rochas de comportamento rúptil. Futuras pesquisas deverão estudar materiais alternativos para a simulação da inversão na região do CMB.
BIBLIOGRAFIA

LEGENDA

- AREIA I: SUPERGRUPO MINAS (figs. 2 e 3)
- AREIA II: SUPRACRUSTAIS (fig.1)
- UNIDADES PRÉ-MINAS (figs. 2 e 3)
- SILICONE: INFRACRUSTAIS (fig.1)
- ZONA DE CISALHAMENTO DÚCTIL (fig.2)

DIREÇÃO DA COMPRESSÃO

Figura 1 - Primeiro experimento: corte longitudinal E-W, na altura da Bacia Sinclinal da Moeda (BSM) e do Complexo Metamórfico da Bação (CMB).

Figura 3 - Terceiro experimento: A - Corte longitudinal E-W, na altura da BSC; B - Corte longitudinal E-W, na altura da BSM e do CMB.
SIGNIFICADO DOS MOVIMENTOS NORMAIS NA BORDA OESTE DO SINCLINAL MOEDA, QUADRIÍTERO FERRÍFERO

JOÃO FERNANDO MARTINS HIPPERTT - DEGEO/UFOP

INTRODUÇÃO

Recentemente, Hippet et al. (1991) identificaram movimentos normais na zona de cisalhamento que marca o contato entre a Formação Moeda e o Complexo Bonfim na borda oeste do Sinclinal Moeda, oeste do Quadrilátero Ferrífero (QF). Estes movimentos têm sido interpretados como provenientes de uma tectônica distensional Proterozoica (Chenale Jr. et al. 1991) que seria correlacionada à deposição do Supergrupo Espinhaço (Marshak & Alkin 1989). Neste trabalho procura-se demonstrar uma interpretação alternativa, onde os movimentos normais são atribuídos à própria mecânica de dobramento do sinclinal, não estando necessariamente vinculados a uma tectônica distensional. Objetiva-se com esta discussão ampliar as possibilidades interpretativas para estas importantes estruturas normais que estão, cada vez mais, sendo reconhecidas no QF.

ARCABOUÇO CINÉMÁTICO

É constituído por três componentes principais de "strain" (Fig. 1). Duas são provenientes do próprio mecanismo flexural de dobramento do sinclinal: a componente coaxial intraestratal e a componente não-coaxial interестratal (Lister & Williams 1983). A terceira componente, também não-coaxial e de caráter regional, é originada pelo transporte tectônico para oeste que causou a inversão da abiss oeste do sinclinal. Na abiss oeste, esses componentes são antiéticos e tendem a se anular, enquanto que na abiss oeste elas devem se somar, o que aumenta a participação do cispalhamento simples (sentido inverso) no "bulk strain" da abiss oeste. Isto está de acordo com a constatação de que feições indicativas de cispalhamento simples (e.g.: foliações S-C) são bem mais desenvolvidas na abiss oeste do que na abiss leste.

ESTRUTURAS NORMAIS E INVERSAS

A ocorrência de uma zona de cispalhamento normal na borda oeste do Sinclinal Moeda pode ser explicada como uma consequência do deslizamento ("flexural slip") dos estratos da sequência supracrustal contra um anepar (o Complexo Bonfim). Entre os demais estratos da abiss oeste, entretanto, devem ser produzidos movimentos em sentido contrário (inversão) como ilustrado na Fig. 2. Este quadro está de acordo com o que se observa na Serra da Moeda, onde os movimentos normais se restringem à zona de contato, dando rapidamente lugar a movimentos inversos, indo-se em direção ao interior do sinclinal. Contudo, em muitos pontos mesofalhas normais e inversas coexistem lado a lado em escala de afloramento, com as primeiras sendo normalmente cortadas pelas últimas.

MICROESTRUTURAS

A contemporaneidade entre estruturas normais e inversas fica evidenciada principalmente em escala microscópica, onde numa mesma seção delgada coexistem estruturas S-C e "microsquires" fisicamente idênticos, intimamente associados, mas que indicam sentidos de cispalhamento contrários (Fig. 3). Evidência para uma formação simultânea é também dada pelos padrões de eixo de quartzo: nas seções delgadas onde ocorrem cispalhamentos contrários (domínios intraestratários), obtêm-se padrões de eixo simétricos em relação à foliação principal "C" (Fig. 3). Já nas seções delgadas com predominância de apenas um sentido de cispalhamento (domínios interestralários), obtêm-se padrões oblíquos que retratam "strain" não-coaxial (Fig. 4).

REOLOGIA E CINÉMÁTICA

Esta associação de cispalhamentos contrários, aqui interpretados como componentes de um par conjugado originado pela componente coaxial de dobramento, está presente ao longo de toda a abiss oeste do sinclinal. As mesofalhas normais e inversas descritas por Endo & Nalini Jr. (1991) são provavelmente uma manifestação mesoscópica deste par conjugado. Por outro lado, os horizontes interestrales retratam a componente não-coaxial do deslizamento flexural. O caráter mais rúptil das falhas inversas em relação as normais é um dos aspectos que parece sugerir que estas estruturas foram formadas em tempos diferentes. Entretanto, no caso de um arcabouço cinemático com componentes coaxial e não-coaxial, pode-se prever que um dos planos do par conjugado (exatamente aquele que corresponderia as falhas inversas) atingiria orientações favoráveis à formação de rupturas extensionais (alto ângulo com o eixo de máxima extensão). Tais planos devem ter apresentado uma maior tendência ao fraturamento nos estágios iniciais de deformação (ver Figs. 5 e 6).
CONCLUSÕES

1. A zona de cisalhamento normal na borda oeste do Sínclinal Moeda pode ser interpretada como resultado do deslizamento flexural dos estratos basais da sequência supracrustal, sem necessariamente retratar um ambiente tectônico distensional; 2. A coexistência em todas as escalas de movimentos normais e inversos pode refletir um par de cisalhamentos conjugados (formação simultânea) originado pela componente de "strain" coaxial que atua no dobramento do sínclinal; 3. O dobramento e a inversão do Sínclinal Moeda podem ter ocorrido em um único evento tectônico, onde o principal fator propulsor foi a ascensão e transporte para oeste do Complexo de Bação.

REFERÊNCIAS

LEGENDA (Todas as figuras com a mesma orientação. Referencial E-W no topo)

Fig. 1 - Arcabouço cinemático do sínclinal Moeda constituído por três componentes de "strain": uma componente não-coaxial regional (Cr) e duas componentes flexurais, que são: componente coaxial intraestral (Cf1) e componente não-coaxial intraestral (Cf2). Fig. 2 - Movimentos normais e inversos na abu oeste do sínclinal produzidos pelo mecanismo flexural. Notar movimento normal no contato. Fig. 3 - Domínio intraestral. Estruturas S-C e "microfractures" opostas (par conjugado). Padrão sinérgico de eixo e de quarto indica "strain" coaxial. Fig. 4 - Domínio intraestral. Microsstrutura e padrão de eixo-s são indicativos de deformação não-coaxial. Fig. 5 - (a) Par conjugado produzido por deformação coaxial ideal. (b) Par conjugado produzido por deformação com componentes coaxiais e não-coaxiais. Nos estágios iniciais de deformação, um dos planos do par tende a se orientar próximo ao plano YZ do ellipsóide (sítios de círculos extensionais), favorecendo a resposta mais rápida ao longo destes planos. Fig. 6 - Relações temporais entre cisalhamentos dúcteis (D) e rápidos (R): (a) Cisalhamento dúctil posterior. (b) Cisalhamento dúctil posterior. (c) Cisalhamentos simultâneos. Note geometria de "duplexes" e a terminação de algumas zonas dúcteis na zona dúcteis (f), como ocorre na abu oeste do sínclinal.
OS MODELOS PROPOSTOS PARA O DEPÓSITO AURÍFERO DE PASSAGEM DE MARIANA

FERNANDO R. OLIVEIRA - IG/UNICAMP
ALFONSO SCHRANK - IG/UNICAMP
ISSAMU ENDO - DEGEOM/UFOP
ROBERTO P. XAVIER - IG/UNICAMP

INTRODUÇÃO

A mina de Passagem de Mariana, situada na região sudeste do Quadrilátero Ferrífero, Minas Gerais, constitui-se em uma das mais antigas minas de ouro do Brasil, com uma longa história que se inicia no final do século XVII quando os bandeirantes alcançaram o Ribeirão do Carmo e encontraram ouro aluvionar. O depósito situa-se no flanco sul do Anticlinal de Mariana (Fig. 1), está encaixado em litologias pertencentes ao Supergrupo Minas, embora existam autores que o considerem, pelo menos em parte, encaixado no Supergrupo Rio das Velhas (cf. Vial, 1988 e Duarte, 1991). Estima-se que sua produção tenha sido de pelo menos 60t de ouro (Fleischer & Vial, 1986).

![Diagrama de estratigrafia](image)

Fig. 1. Mapa geológico simplificado da região de Ouro Preto-Mariana. (adotado de A.L.M. Barbosa, 1969 in Dorr, 1969).

MODELOS GENÉTICOS PROPOSTOS PARA O DEPÓSITO AURÍFERO DE PASSAGEM

O primeiro grupo de modelos tem em comum a proposta de que a mineralização estaria relacionada.
direta ou indirectamente a atividade ígnea, além de ser epigenética, Hussak (1989), Derby (1911) e Guimarães (1965), estão entre os defensores desse modelo. O segundo grupo, compreende a hipótese de que a mineralização é epigenética mas relacionada a falhamentos de empurrão, com vergência para WNW (fig. 2), e entre seus defensores estão Barbosa (1968), Vial (1988) e Duarte (1991). O terceiro grupo, compreende o modelo proposto por Fleischer (1971) e Fleischer & Routhier (1973) e traz como característica fundamental a interpretação da mineralização como singenética à deposição do filito Batatal. As propostas recentes, de Chauvet et al. (1993/94), constituem o quarto grupo, propõem que a mineralização é controlada por estruturas de escorregamento tardias ("late gravity sliding") vergentes para ESE, o depósito seria epigenético mas associado a estruturas de escorregamento e não de cavalegamento como no segundo grupo.

Fig. 2. Seção na porção SE do Anticlinal de Mariana. (adaptado de Dorr, 1969).

COMENTÁRIOS

Apesar dos trabalhos realizados após a revisão feita por Ladeira (1988) (e.g. Duarte 1991, Nalini Jr. 1993 e Chauvet et al. 1993/94) ainda persistem questões em aberto, referentes ao depósito de Passagem, entre as quais destacam-se:

1- Com a existência demonstrada de pegmatitos no Complexo do Baçar contendo monazita com 230 Ma (Machado et al. 1992), portanto posteriores a deposição dos sedimentos do Supergroup Minas, a possibilidade de uma relação das mineralizações a turmalina-arsenopirita com líquidos graníticos (grupo 1) torna-se plausível.

2- O controle estrutural da mineralização, proposto por diversos autores como sendo representado por falhamentos de empurrão, parece não se constituir na melhor alternativa, pois a deformação compressiva frontal, em princípio não é favorável à criação de grandes aberturas. Deve-se notar a ampla distribuição da mineralização, ao longo de 15 km e com uma espessura que pode atingir até 15m. Alguns autores já abordaram o problema e propuseram soluções alternativas. Barbosa (1968) sugere que após o empurrão de E para W, ocorre o escoamento domêncio da estrutura (Anticlinal de Mariana), gerando aberturas no plano de falha onde aloja-se a mineralização. Chauvet et al. (1993/94), propuseram que a mineralização teria se formado tardivamente ao empurrão, durante o relaxamento deste, quando seriam criadas estruturas extensionais onde a mineralização se aloja.

3- Ainda persistem dúvidas quanto a correlação estratigráfica das rochas que abrigam o depósito com aquelas encontradas regionalmente. Vial (1988) e Duarte (1991), afirmam que ocorrem litotipos do Grupo Nova Lima que teriam sido colocados pela tectônica compressiva, especialmente as rochas carbonáticas que se encontram na porção SW da mina, abaixo do Itabirito Cauê. Não há fatos concluintes nessa afirmação, pois embora se conheça, no Supergroup Minas, carbonatos estratigráficamente abaixo da Formação Cauê, a inversão tectônica nesta zona de falha é possível (vide as repetições tectônicas maiores ao longo do perfil geológico - figura 2).

BIBLIOGRAFIA

FLEISCHER, R. 1971. Le gisement aurifère à tourmaline de Passagem de Mariana (Minas Gerais/Brasil) et son cadre.

DEFORMAÇÃO E METAMORFISMO DA SEQUÊNCIA LITOLÓGICA PRECAMBRIANA DA REGIÃO DA SERRA DA PIEDEAD
QUADRILÁTERO FERRÍFERO, MINAS GERAIS

F.R.M. PIRES - UFRJ
A. GODOI - UFRJ

Em termos litoestratigráficos a área pode ser subdividida de Sul para Norte em greenstones do SG Rio das Velhas, itabíritos do SG Minas, com raros remanescentes da forte tectônica, de metaconglomerados, quartzitos e fósitos do Gr. Cararacha comprimidos em lentes na vertente Sul da Serra, próximo a Capela, capados por sequência de micaximistos com intercalações irregulares e esparas de quartzitos negros a cinzas, fólios prata, fólios cinza, considerados como pertencentes ao Gr. Piracicaba, aparentemente superpostos a espessa sucessão de micaximistos com esporádicos corpos de antibolitos, ortoderivados, passando a bítioxia muscovita xistos com segregações lenticulares de quartzo, magnetita quartzitos, delgadas lentes de filito grafitoso, seguidos por pacote de bítioxia gnaiss de grã fina com corpos de antibolito, turmalina, quartzitos e xistos com muscovita verde.

Gnaisses migmaticos e corpos de granito limitam o conjunto a Norte. Aparentemente o metamorfismo da sequência aumenta para NNE, com o aparecimento ou formação dos gnaisses e granitos.

Arenitos metaconglomeráticos, de coloração avermelhada a cinza, não deformados pertencentes ao Gr. Macaúbas (IGA, 1983) e restos de sedimentos argilosos, com ocasionais acumulações de seixos de hematita na base, de idade Fanerozóica (bacias intramontanas) que ocorrem com pequena expressão territorial, representam depósitos mais recentes.

A estrutura da região que consiste no prolongamento da Serra do Curral em sua parte nordeste, ocupa trecho entre Sabará e o Morro do Tapete em cerca de 25km de extensão, na direção NE. Coincidentemente a estrutura termina com o aparecimento de fortes zonas de cisalhamento de direção Norte-sul determinantes da faixa do Espinhaço. O encontro dessas duas estruturas, que afetou sensivelmente as rochas do Embasamento tanto quanto as sucessões supracrustais produzia complexidade estrutural denunciada principalmente pelas zonas de cisalhamento.

A principal meso-estrutura encontrada nas rochas consiste no forte S1- plano, por vezes paralelo ao bandamento original S0 que define o trend megaestrutural. A S1- foliação principal composta pelo arranjo cristalográfico dos minerais planares, filossilicatos e hematita, por vezes transposta por S2- planos de cisalhamento subconcordantes, visíveis tanto em micro quanto em meso escala frequentemente está fortemente nilonitizada. Planos de crenulação nos metasedimentos também seguem as direções dos planos de cisalhamento.

Os itabíritos registraram os efeitos dos cisalhamentos dúctil e dúctil-rígido revelando espetacular sucessão de dobruras similares e concêntricas, métricas, truncadas por S1-planos nas zonas de flancos. Fortes linhas de estiramento mineral, as vezes recuadas, apresentam caimentos nos intervalos 180°-120° e 070°-090°, em geral downlip. Microplaquetas de hematita orientam-se segundo os S1-planos axiais das dobras. São comuns boxfolds, kink-bands e chevrons com eixos caíndo para 180°. O prolongamento das zonas de cisalhamento Norte-sul nos itabíritos produziu inúmeras falhas quase sempre com brechas, com fortes mergulhos para os azímatos 220° até 315°, caracterizando regime mais rígido. Na mina do Córrego do Meio essas planos encontram-se paralelizados a S-foliação principal e geraram espetaculares bandas cataclásticas planares.

Na parte Norte da área o cisalhamento truncou severamente as sequências, deslocando sinistralmente as rochas e produziu forte rotação separando setores de 3-4 km de dimensão. O bandamento, inicialmente paralelo ao flanco Sul da estrutura, foi girado e estirado para Norte e Sudeste. As zonas de cisalhamento ficam recuadas para Sudeste resultando no desaparecimento e surgimento brusco de unidades. Rafts e fatias tectônicas são encontradas embutidas exotéricamente em certas unidades ou são abandonadas e isoladas ao longo de contactos geológicos. Itabíritos e quartzitos se prestam bastante para esse tipo de feição estrutural. Aparentemente os itabíritos da Serra de Sabará e a delgada lente que ocupa a parte central da área representam essa estrutura. Os espessamentos dos metasedimentos a
Nordeste da mina do Córrego do Meio e nos arredores da Capela constituem claros efeitos dessa tectônica. A língua isolada de itabiritos tremolíticos próximo a Pintos está encaixada numa parte de zona de cisalhamento Norte-sul, antes de se recuar para Sudeste. Aparentemente a forma fortemente recurvada da extremidade Nordeste da estrutura representa o truncamento por zona de cisalhamento que ao atingir a unidade itabirítica curvou drasticamente e englobou fatis exólicas de gnaisses. Fragmentos de rochas meta-ultramáficas xistificadas e de gnaisses nas zonas de contacto entre o Granito Muniz e os metassedimentos também constituem efeitos do cisalhamento atuante.

REFERÊNCIAS

MÉTODOS NÃO-CONVENCIONAIS NA EXPLORAÇÃO PETROLÍFERA DA BACIA DO SÃO FRANCISCO: GEOQUÍMICA DE SUPERFÍCIE (GASOMETRIA) E PROSPECÇÃO MICROBIOLÓGICA

REGINA CÉLIA R. DOS SANTOS - PETROBRÁS/CENPES/DIVEX/SEGEQ
NELSON A. BABINSKI - PETROBRÁS/CENPES/DIVEX/SEGEQ

INTRODUÇÃO

O fundamento básico que caracteriza a aplicação dos métodos não-convencionais, como o mapeamento geológico convencional, em todas as situações das camadas superficiais do solo. Os indicadores normalmente utilizados são hidrocarbonetos gasosos leves (metano-C1) e gasosos pesados (etano, propano e butano-C2, C3 e C4, respectivamente), hidrocarbonetos líquidos leves ("range" gasolina C4-C7) e pesados (betumes). As determinações qualitativas e quantitativas são realizadas por cromatografia em fase gasosa de alta resolução, com níveis de detecção da ordem de (ppb) partes por bilhão (Babinski, 1986 e Santos, 1991).

A partir da hipótese da lognormalidade das variáveis geoquímicas, calcula-se a "background" como a média dos logaritmos das concentrações de hidrocarbonetos; expurgando-se as assimetrias positivas e as binormalidades, que por si só, já representam anomalias. Os Cálculos estatísticos assim conduzidos permitem, quando somados os desvios padrão ao "background", estabelecer as concentrações padronizadas e o mapeamento das distribuições anômalas para cada tipo ou grupo de hidrocarbonetos analisados (Ferreira, 1985).

GEOQUÍMICA DE SUPERFÍCIE (GASOMETRIA)

A gasometria baseia-se na detecção direta dos hidrocarbonetos adsorvidos ou absorvidos nas camadas superficiais do solo. Os indicadores normalmente utilizados são hidrocarbonetos gasosos leves e gasosos pesados (etano, propano e butano-C2, C3 e C4, respectivamente), hidrocarbonetos líquidos leves ("range" gasolina C4-C7) e pesados (betumes). As determinações qualitativas e quantitativas são realizadas por cromatografia em fase gasosa de alta resolução, com níveis de detecção da ordem de (ppb) partes por bilhão (Babinski, 1986 e Santos, 1991).

A partir da hipótese da lognormalidade das variáveis geoquímicas, calcula-se a "background" como a média dos logaritmos das concentrações de hidrocarbonetos; expurgando-se as assimetrias positivas e as binormalidades, que por si só, já representam anomalias. Os Cálculos estatísticos assim conduzidos permitem, quando somados os desvios padrão ao "background", estabelecer as concentrações padronizadas e o mapeamento das distribuições anômalas para cada tipo ou grupo de hidrocarbonetos analisados (Ferreira, 1985).

PROSPECÇÃO MICROBIOLÓGICA

Estas emanações de hidrocarbonetos, em fluxo contínuo em direção à superfície, estimulam e seleccionam microorganismos capazes de usá-los como fonte exclusiva de carbono e energia, constituindo o fundamento básico da prospecção microbiológica de petróleo (Linhares et al., 1989). Estas excusações gasosas podem ser consumidas pelos microorganismos até concentrações abaixo do limite de detecção dos gases e seus vapores através da gasometria. Nestas circunstâncias os próprios microorganismos são os indicadores da ocorrência de geração e migração de hidrocarbonetos em sub-superfície. Dentre os microorganismos consumidores de hidrocarbonetos destacam-se os Pseudomonas Organos e Chimioiithothrophes, além de algumas bactérias (mucobacterium e micrococceus - gran+ e gran-) e fungos (sprepiomyces) (Seabra et al., 1987).

APLICAÇÃO EXPLORATÓRIA NA ÁREA PETROLÍFERA

Os métodos não-convencionais de exploração petrolífera foram aplicados, em conjunto com o mapeamento geológico convencional, em duas áreas distintas da Bacia do São Francisco: Montalvânia e Buritizeiro, ambas situadas na porção norte do estado de Minas Gerais. Na região de Montalvânia foi estudada a área de 150Km² (217 estações gasométricas e 17 microbiológicas) enquanto que na região norte de Buritizeiro a área levantada abrange 300Km² (594 estações gasométricas e 21 microbiológicas), sendo suas malhas irregulares e distribuídas ao longo de estradas e caminhos disponíveis e transitáveis à época dos trabalhos de amostragens.

A prospecção gasométrica evidenciou a presença de hidrocarbonetos gasosos leves e pesados (metano-C1 a butano-C4) em praticamente todas as amostras analisadas, enquanto que os vapores de hidrocarbonetos líquidos do "range" gasolina pentano a heptano-C5-C7 foram identificados somente em aproximadamente 15% das estações estudadas. Os estudos microbiológicos apresentaram resultados positivos e altas contagens de microorganismos em todas as estações analisadas, confirmando-se assim a presença de micro-exsudações constantes de hidrocarbonetos nas duas áreas estudadas.

As concentrações totais quantificadas e o "background" calculado para cada tipo de hidrocarbonetos são relativamente baixos, comparando-os aos determinados em outras bacias.
sedimentares de idades paleozóicas e mesozóicas (Babinski & Santos, 1991).

O mapeamento das concentrações padronizadas "background" somado aos desvios padrão evidenciaram as áreas com anomalias geoquímicas, cuja distribuição areal é compatível com as estruturas geológicas mapeadas em superfície e portadoras de hidrocarbonetos gásosos de acordo com os resultados exploratórios dos poços petrolíferos perfurados nas duas áreas estudadas. Os resultados exploratórios confirmaram-se plenamente tanto no tipo de hidrocarboneto trapeado nas trapas geológicas (somente hidrocarbonetos gásosos leves e pesados) quanto na sua localização. Merece destacar que devido as peculiaridades exploratórias estas duas acumulações de gases naturais foram consideradas sub-comerciais.

REFERÊNCIAS BIBLIOGRÁFICAS

ESTRUTURAÇÃO DA PORÇÃO MERIDIONAL DA BACIA ALTO - SANFRANCISCANA CRETÁCEO DO OESTE DE MINAS GERAIS

EDILSON YOSHIIKU SAWASATO - DEGEOM/EM/UFOP
FERNANDO F. DE ALKMIM - DEGEOM/EM/UFOP

A sequência de rochas cretáceas da porção meridional da Bacia Alto-Sanfranciscana (oeste de Minas Gerais) é representada por duas unidades principais: A Formação Areado, de natureza siliciclástica, posicionada na base e a Formação Mata da Corda, constituída por rochas intrusivas, efusivas e piroclásticas no topo (Barbosa 1965; Barcelos & Sugui 1980b e Kattah 1992).

O levantamento do arcabouço estrutural da bacia nas regiões de Galena, Arcado e Presidente Olegário, revelou a existência de um rico acervo de estruturas presentes tanto nas rochas da cobertura (Formação Areado), quanto em seu embasamento (Grupo Bambuí).

Uma análise estrutural, na qual os principais critérios utilizados foram a disposição espacial e temporal das estruturas e suas relações genéticas, permitiu a individualização de quatro grupos de estruturas. Esses grupos, conforme se verificou, constituem o registro dos diferentes eventos que se sucederam durante o processo evolutivo da bacia.

Os eventos interpretados a partir do registro estrutural contido sobretudo nas rochas da Formação Areado foram os seguintes:

a) Uma tectônica formadora da bacia, de natureza extensional, que provocou a reativação negativa da falha pré-cambriana de João Pinheiro e gerou uma série de falhas normais e fraturas de tração ambas com direção NNW - SSE. Esse evento de idade eo - cretácia foi responsável pela acumulação, pelo menos da parte inferior do palocote Areado na região estudada. A resposta estratigráfica a esse tectonismo, nas porções mais proximais à falha principal (falha de João Pinheiro), manifesta-se através de níveis sucessivos de congolomerados, enquanto nas posições mais distais ao falhamento uma espessa sequência de folhelhos lacustres foi deposita. A sequência de "coarsening upward" mostrada pelos níveis de congolomerados indica uma atenuação progressiva da atividade tectônica, a qual deve ter cessado na época da deposição da porção superior do palocote Areado (por volta do Cretáceo Médio).

b) Deformações pré-litificação, representadas por dobras convolutas interessratias, estruturas em "chama", "slumps" e deformações causadas por escape de fluidos. Acredita-se que as deformações pré-litificação, tenham resultado de desestabilizações nos depósitos sedimentares induzidas pelos abalos sísmicos que acompanharam as atividades magmáticas na bacia possivelmente no limiar do Cretáceo Superior.

c) Deformações induzidas por intrusões de corpos ígneos relacionados ao magmatismo alcalino, neo - cretáceo, da Formação Mata da Corda. As estruturas que caracterizam esse evento deformador são arqueamentos, dobras abertas e fechadas e falhas reversas. Além da ação mecânica, os corpos intrusivos desempenharam importante papel no processo de cimentação da rocha encaixante. Essa cimentação se deu na forma de opala. A participação das intrusivas se fez através do fornecimento de calor as encaixantes, o que possibilitou a solubilização e o aumento da concentração da sílica favorecendo sua posterior precipitação.

d) Uma tectônica deformadora transstratativa, de idade pós-Areado, de natureza extensional, caracterizada por fraturas e falhas normais - sinistral, ambas com direção NE-SW. Esse evento causou modificações na geometria original da bacia e foi especialmente importante na definição das características morfotectônicas atuais, tais como a distribuição rede de área em e o padrão de basculamentos de blocos. Observações em lâminas delgadas das rochas da Formação Areado afetadas pelas falhas obliques, permitiram reconhecer a posterioridade do tectonismo em relação à eo-diagnese da rocha. Esse fato indica uma idade mais recente que o Cretáceo médio para os referidos falhamentos.

É especulado, neste trabalho, a possibilidade de associação entre esse evento deformador e o processo de soroquimento do Arco do Alto Paranaiba.

Com exceção do evento formador da bacia (evento a), os eventos deformadores (b, c e d) apresentam um maior grau de incerteza quanto à cronologia relativa. Admite-se a possibilidade de simultaneidade dos processos deformadores bem como uma causa comum para os mesmos: o magmatismo alcalino da Formação Mata da Corda.

REFERÊNCIAS BIBLIOGRÁFICAS

PETROGRAFIA DO DEPÓSITO DE CROMITA DO MORRO DO CRUZEIRO, SERRO, MINAS GERAIS

ADRIANA DE CASSIA ZAPPAROLI - UNESP (Pós graduação)
NELSON ANGELI - UNESP/Departamento de Petrologia e Metalogênica
ADOLF HEINRICH HORN - CPMTC/IGC/UFMG

INTRODUÇÃO

A Sequência Serro, definida por Almeida Abreu et al. (1989), compreende rochas metamagmáticas e metasedimentares conhecidas por, em geral, apresentarem corpos de cromítitos associados; são clorita xístos, esteatitos, talco xístos e serpentinitos (Reger, 1972) e, em sua porção superior, aparecem formações ferríferas bandadas que contêm zonas de crostas de xístos (Uhlke, 1982). Um esquema evolutivo para estas rochas foi proposto por Renger (1972): intrusão do corpo vulcânico acometendo de estruturas básicas e ácidas. Assim, a tectônica regional e metasomático. O depósito de cromita do Morro do Cruzeiro localiza-se dentro do perímetro urbano da cidade de Serro, estando encaixado numa sequência tectônica que, regionalmente, apresenta contatos tectônicos com os gastos de embasamento à leste e com as rochas da Sequência Itapanhoacanga à oeste.

ASPECTOS PETROGRÁFICOS

Três tipologias são reconhecidas neste depósito: lentes e/ou “pods” de clorita xístos e cromítitos contidos em um pacote do talco carbonato xístos, onde os contatos geralmente são bruscos.

Os clorita xístos são compostos por clorita (50-80%), talcos (15-30%), opacos (5-20%) e como secundários e acessórios rutilo, titânita, apatita e turmalina. Apresentam textura lepidoblastica e localmente neomófitica gramadopilar. As cloritas são magnesianas, na forma de folhas de talco com extinção ondulante, definindo uma foliação S1 anastomosada ou intercrescida com talco ou como cílicas maiores envoltas pela foliação. O talco ocorre como folhas ou folhas subradiais, bem desenvolvidas, contidas nos planos de S1. Os opacos aparecem envoltos pela foliação S1 e são representados por: magnetita euédrica a subbélica, apresentando lamelas de alteração para hematita, opaca, fraturada, potzquitilizante e apresentando estruturas coloidais e cavidades localmente preenchidas por calcopirita; pirita prismatico goethitizada livre ou aglomerada, apresentando estruturas ortogonais tipo e não deformadas; e um terceiro grupo de opacos, goethitizados, com forma tabular, estruturas ortogonais, livres ou intercrescidos, apresentando em suas bordas e em seus núcleos rutilo, que provavelmente trata se de ilmenita. A titânita é subédrica e fraturada. A apatita é subédrica, rica em inclusões e com extinção ondulante. A turmalina está restrita aos contatos com os talco carbonato xístos, é milimétrica a centimétrica, fraturada, corrodida e com desenvolvimento de claridade sobre os cristais.

Os cromítitos são compostos essencialmente de cromita emersa em uma matriz rica em talco, carbonato e kammererita, apresentando como acessórios rutilo, prata e calcopirita. Texturas xenomórficas a hipóspinórficas, ineugranular e reliquiares são comuns, embora a textura dominante seja "pull apart". Apresentam-se como lentes e/ou “pods”, circulares a ameobioides, com contatos bruscos e localmente transicionais com o talco carbonato xístos. A cromita é milimétrica, subédrica a anédrica, fraturada, por vezes arredondada, zonada, corrodida, poquilita por apresentar inclusões orientadas e, através da densidade e frequência das inclusões, é possível classificá-la em quatro classes: livres de inclusões; inclusões somente nas bordas; inclusões por todo grão; e com distribuição aleatória; bandas de cissalhamento são observadas apresentando variado grau de comunicação. A clorita cromítica (kammererita) apresenta associada a cromita desenvolvendo localmente um bandamento metamórfico (concordante com S2) ou substituindo seus núcleos. Cristais de talco e carbonato são concordantes com S1. Associados a cromita ou livres, aparecem cristais de pirita e calcopirita alterando para bornita. Cortando os cromítitos, aparecem veios centimétricos a métricos de talco, carbonato e kammererita.

O talco carbonato xístos apresenta proporções variadas de talco (40-20%), carbonato (30-50%) e como acessórios e secundários clorita, kammererita, cromita, rutilo, apatita, prata e magnetita. O talco apresenta na forma de folhas que definem a foliação principal. Os carbonatos apresentam coloração verde a branco e são representados por magnetita, feitosa, siderita magnesfierita e ferrodozomita, não maclados e não deformados. A kammererita ocorre associada aos grãos de cromita, nos contatos com os cromítitos ou em veios. A cromita é euédrica a anédrica, rica em inclusões e zonada. O rutilo é anédrico e ocorre associado a cromita. A pirita e a magnetita são subédricas a euédricas, milimétricas, livres e sem orientação preferencial. Veios de talco são centimétricos a métricos, sigmôdais, com crescimento de lamelas das bordas para o centro e localmente ricos em cristais bem formados de hematita. Veios de
carbonatos milimétricos a centimétricos também estão presentes e apresentam associados a si uma assembléia de opacos representados por: magnetita apresentando lamelas de alteração para hematita, rica em inclusões e com alteração das bordas para ghoetita; cubelita/calcocina e bornita; calcopirita livre ou associada a bornita e pirita.

DISCUSSÃO

O mineral tipicamente parental observado é a cromita, onde características como zoneamento, fraturamento e inclusões orientadas indicam que esta foi afetada por processos deformacionais/metamórficos, onde suas bordas tem se "ferritocromita" representando uma segunda geração e apenas seus núcleos poderiam representar a composição primária. Duas gerações de magnétitas estão presentes: livres ou associadas aos veios de carbonato, apresentando núcleo caráter respectivamente pré a sin tectônica e sin a pós tectônica. A pirita também aparece em duas gerações distintas: pré a sin deformacionais e tardí a pós deformacionais. Calcopirita, bornita, cubelita e calcocina são nitidamente tardí a pós tectônicas. A clorita representa três fases: a primeira, representada por cristais maiores com extinção ordulante, provavelmente pré tectônica; a segunda representada por palhetas sin tectônicas; e a terceira, cromitífera, sin a tardí tectônica. O rutílo normalmente é metamórfico ou hidrotermal. Admitindo-se que a ilmenita é pré deformacional, assim como a cromita, é assumido, para este mineral, caráter sin deformacional. A turmalina é sin deformação, não podendo ser descartada a hipótese de ser pré deformacional. O talco e carbonatos são tipicamente sin a tardí tectônicos. Embora, não sejam observados neste depósito, minerais dos grupos da serpenína e anfibólio, esses foram descritos em outras porções da faixa ultramáfica, e são indicativos de serpenitização e metamorfismo atingindo fácies anfibolito.

CONSIDERAÇÕES FINAIS

Devido a inexistência de estruturas primárias, não é possível definir estas rochas como intrusivas ou vulcânicas. É assumido que ocorreu um processo de serpenitização, embora não tenham sido observadas serpentinas. O metamorfismo foi responsável pela geração da maioria dos minerais presentes e provavelmente atingiu fácies xisto verde à anfibolito, evidenciada pela presença de antofilita descrita na literatura. Esta fase desencadeou cloritização generalizada e, localmente, turmalinização. A fase retrometamórfica é representada pela cloritização das turmalinas, dentro da fácies xisto verde. Concomitante ao metamorfismo, representando uma fase hidrotermal pervasiva sin a pós tectônica, ocorre a talcificação e carbonatação das rochas. A fase mais tardia foi responsável pela assembléia mineral rica em cobre e carbonatos, evidenciando fluidos ricos em CO₂. A última fase é representada pelo processo intemperico que gerou níveis manganesíferos, caolínítico, goethitização e calcédonia/quartzo nos planos de foliação.

AGRADECIMENTOS

O desenvolvimento do trabalho foi possível graças ao financiamento da FAPESP (processo 93/2195-8). Agradecimentos especiais são devidos ao Centro de Geologia Eschwege (IGC-UFGM) e a seus funcionários pelo apoio fundamental prestado.

BIBLIOGRAFIA

PAINEL SOBRE ROCHAS E MINERAIS INDUSTRIAIS DO ESTADO DE MINAS GERAIS

ANTÔNIO GILBERTO COSTA-CPMTC-IGC/UFG
ANTÔNIO WILSON ROMANO-CPMTC-IGC/UFG

INTRODUÇÃO

As rochas e minerais industriais estão presentes, desde as mais remotas épocas, no dia a dia da população. A utilização desses recursos minerais é extensiva, os métodos de extração são, na maioria das vezes, feitos de forma artesanal e predatória e o impacto sobre a economia nacional não é levado em conta, pois grande parte da produção foge ao controle do sistema tributário. Se corretamente avaliada, a produção brasileira global de bens minerais não metálicos deve seguramente suplantar aquela dos metálicos.

Um outro aspecto a ser considerado é que os minerais e rochas industriais são estigmatizados como produtos de segunda linha, não despertam o interesse técnico e científico dos profissionais e os métodos de lavra e beneficiamento não são adequados. Consequentemente, são pequenos os investimentos de pesquisa, de capacitação tecnológica e de pessoal técnico especializado empregado, desde a fase de prospecção e pesquisa até o beneficiamento. Mesmo nas grandes empresas, principalmente naquelas ligadas ao setor cerâmico, são ainda muito tímidos os investimentos.

A tendência de se relegar os minerais e rochas industriais a um segundo plano foi consequência do próprio desenvolvimento da pesquisa mineral brasileira, tradicionalmente dirigida aos bens minerais metálicos e aos combustíveis fosseis, o que seria de se esperar em um país com grandes reservas de ferro e ouro, com industrialização crescente e com carência energética. Uma primeira questão é levantada: conseguirão os profissionais especializados do setor mineral, principalmente os geólogos e engenheiros de minas, ainda se imporem neste setor produtivo do setor mineral?

Pesquisando mais a fundo, descobre-se que existe uma série de preconceitos contra os recursos não metálicos. A idéia de que argila (barro) e areia não se prospectam e nem se pesquisam e que qualquer pessoa pode utilizar materiais de construção sem nenhum estudo técnico prévio, retratam o segundo plano em que o setor se encontra. Para agravar, o Código de Mineração é falho ao classificar grande parte do recurso mineral não metálicos na classe II, que dispensa quaisquer procedimentos técnicos de pesquisa e avaliação. Por outro lado, grande parte destes recursos, que deveriam por imposição da legislação, ser destinados exclusivamente para a utilização definida no código, o são para outros fins mais nobres. Um exemplo pode ser citado no caso de britadoras que extraem blocos de rochas ornamentais.

Uma outra idéia errônea é de que não se agrega valor suficiente ao produto final, quando do beneficiamento, aos bens minerais não metálicos, de modo a justificar investimentos mais consistentes.

Nos países desenvolvidos o valor agregado ao produto beneficiado pode suplantar muitas vezes aquele do produto bruto, havendo diversas especificações para o mesmo material, oriundo da mesma lavra, o que diversifica o preço final.

No entanto, a posição atual do mercado pode ser revertida, em conseqüência de certos “acidentes de percurso” isolados, como o fato recentemente o boom do mercado de rochas ornamentais, notadamente referente aos granitos e gnaisses para exportação.

Analisando um outro aspecto, as próprias escolas de geologia não dão a devida importância aos minerais e rochas industriais, sendo poucos os cursos que oferecem disciplinas específicas nesse campo. A capacitação profissional para este segmento começaria com sólidos conhecimentos de Mineralogia, que é a ciência fundamental para a caracterização dos materiais, de Cristalografia para a pesquisa tecnológica, de Sedimentologia e Mapamento Geológico, além das disciplinas básicas para a prospecção e pesquisa. Um profissional com este tipo de formação, fundamentalmente geológica, estaria capacitado a atuar tanto no setor de pesquisa de uma grande indústria cerâmica, quanto em uma frente de lavra para rochas ornamentais. Um outro problema sério no trato dos recursos minerais não metálicos é que o volume de produção sendo geralmente alto e a lavra quase sempre se processando de forma rudimentar, o impacto da atividade extrativa sobre o meio ambiente é muito mais acentuado, o que consequentemente desperta um maior clamor público.

Porém este ponto é fundamentalmente de concientização e controle por parte dos órgãos responsáveis, sendo que programas de recuperação de áreas degradadas poderão ser viabilizados a curto e médio prazo.

CONCEITUAÇÃO DE MINERAIS E ROCHAS INDUSTRIAIS
Afinal, que são minerais e rochas industriais?

São classificados como minerais e rochas industriais todos aqueles bens minerais que não são minérios, isto é, excluído aqueles minerais dos quais se pode extrair economicamente um ou mais metais e excluídos também os combustíveis fósseis, tais como o gás natural, petróleo e carvão. A classificação inclui também as gemas (diamante e pedras coradas), alguns minerais metálicos de uso industrial, tais como a cromita, bauxita, óxidos de titânio usados como pigmentos (rutilo, ilmenita, anatássio) e fertilizantes. Alguns produtos industrializados ou semi industrializados, tais como a cal virgem ou hidratada, carbonato de cálcio precipitado, sulfatos e hidróxidos industriais, quartzo cultivado, etc., têm sido incluídos na classificação, porém rigorosamente não o devem, pois já passaram por um processo industrial de transformação. A legislação mineral brasileira os diferencia em diversas classes, contrariamente ao bens minerais metálicos.

Os minerais e rochas industriais tem preços que variam de muito baixos a extremamente altos. No primeiro caso estão os produtos in natura para construção civil, tais como areia e areia. Os produtos beneficiados, sujeitos a especificações técnicas e destinados sobretudo às indústrias cerâmica, de tintas, papel e química de um modo geral, como é o caso do talco, caulim, cromita, e por outro lado aquelas dos mineiros das rochas ornamentais, podem agregar valor muitas vezes superior ao do produto bruto. No caso das gemas, como diamante, esmeralda e algumas pedras coradas, o preço pode atingir valores extremamente altos. Para os produtos de mais baixo preço, o que conta, além do volume de produção, é a localização da sua área de extração em relação ao mercado consumidor. Por exemplo, areia para construção civil que abastece o mercado de Belo Horizonte, é anti-econômica se situada a mais de 60km do distribuidor.

No aspecto geológico, os minerais e rochas industriais são encontrados em todos os ambientes geológicos, têm gêneis diversas que são ligados a processos ígneos, metamórficos e sedimentares, e formam depósitos primários ou secundários.

A literatura especializada produzida no Brasil é ainda muito pequena, sendo fonte de referência as publicações do DNPM, algumas revistas técnicas, anais de eventos técnico-científicos e recentemente no estado de Minas Gerais, os mapas publicados pela Companhia Mineradora de Minas Gerais -COMIG

USOS E APLICAÇÕES INDUSTRIAIS

As aplicações dos minerais e rochas industriais estão praticamente afetadas a todos os ramos da atividade industrial, concentrando-se sobremaneira na indústria cerâmica, na química e no setor da construção civil.

Na indústria cerâmica, são usadas tanto na cerâmica vermelha, na branca, nas especiais, e na de refratárias. Na indústria química a gama de produtos minerais utilizados é muito vasta, havendo um grau elevado de substituição, como por exemplo na indústria de tintas, que aceita os mais diversos tipos de fillers, por exemplo, caulim, carbonato de cálcio, agalmatolito e talco. No setor da construção civil observa-se o uso ou aplicação de minerais e rochas industriais, com ou sem nenhum beneficiamento. Podem ser utilizados desde a fundação, passando pela alvenaria até a fase final de acabamentos interno e externo.

A enorme gama de usos e aplicações incluem:

- Cerâmica vermelha, branca, especial e refratários
- Indústria química (fabricação de insumos químicos)
- Indústria de tintas, plásticos, borracha, pigmentos, papel
- Indústria farmacêutica e de cosméticos
- Materiais para construção civil
- Rochas ornamentais
- Gemas lapidadas e beneficiadas artesanalmente
- Indústria vidreira
- Indústria de cal, cimento e de agregados
- Fertilizantes e corretivos de solos
- Fundentes, aglomerantes e moldes fundição para siderurgia e metalurgia
- Indústria ótica e eletrônica
- Abrasivos
- Lamas de perfuração
- Clarificantes e filtrantes
- Isolantes acústicos e térmicos
- Lubrificantes

Além destas aplicações industriais, as rochas e minerais são a base do artesanato, como são os casos da pedra-sabão nas imediações de Congonhas do Campo e Ouro Preto e da argila no Vale do Rio Jequitinhonha, uma atividade de profundas raízes fixadas na tradição popular e que sustenta uma considerável parcela da chamada economia informal. Também deve-se fazer referência aos minerais de coleção e genas, que expressiva há algumas décadas, hoje é de grande importância regional, como é o caso da região abrangida pela Província Pegmatítica Oriental e dos quais o estado de Minas Gerais é reconhecidamente o maior produtor brasileiro e um dos mais importantes fornecedores mundiais.

ESPECIFICAÇÕES TÉCNICAS

As especificações técnicas para o emprego destes materiais variam conforme a destinação do produto e são extremamente rígidas para alguns segmentos industriais, principalmente no setor químico, de tintas e de papeis. No que diz respeito ao mercado interno consumidor de rochas ornamentais, ao contrário do que ocorre em outros países, só recentemente teve início um processo mais de concentração por parte dos produtores, profissionais do setor e de parte do mercado consumidor, para a importância destas especificações.

Para carga mineral são especificações rígidas, por exemplo: inércia química, alvura, reflectância, faixas
definidas de granulometría baixa, abrasividade, poder de absorção, etc.

Para a cerâmica branca, especial e de refratários exige-se, conforme os tipos, matérias primas com teores de sílica, alumina, álcalis, MgO, CaO, etc., dentro de faixas que podem ser extremamente rígidas.

O talco para indústria farmacêutica e cosmética deve ser absolutamente isento de anfibólios fibrosos, calcário para cimento deve ter baixo teor em MgO. O quartzo usado anualmente em indústria ótica e eletrônica tem sido substituído por quartzo cultivado, exigindo para sua fabricação de lascas de alta pureza.

De um modo geral, um grande inimigo dos minerais e rochas industriais, quando usados para fins industriais menores, é o teor em hidróxidos de ferro, o que limita a quantidade dos depósitos de boa qualidade.

Para as rochas ornamentais são especificações importantes as seguintes:

- Homogeneidade
- Resistência à abrasão
- Resistência à flexão
- Resistência à compressão
- Alterabilidade
- Brilho

ZONEAMENTO DOS RECURSOS MINERAIS NÃO METÁLICOS DO ESTADO DE MINAS GERAIS

O estado de Minas Gerais, por ser o segundo estado mais industrializado do país, absorve uma gama extremamente variada de bens minerais não metálicos e sustenta de matéria prima parte das indústrias de São Paulo, Rio de Janeiro e outros estados, principalmente aquelas do setor químico e cerâmico.

Dado o alto grau de substituição praticado na indústria, é difícil dizer qual o produto mais nobre disponível no mercado, porém é fácil dizer que o mineral que encontra o mais largo leque de aplicações industriais é o caulim, seguido pelo carbonato de cálcio natural ou precipitado e o talco. Alguns materiais nobres, quase que restritos ao estado de Minas Gerais, como por exemplo o agalmatolito, não têm portanto, peso frente à totalidade da produção brasileira dos que lhe são substitutos. A listagem seguinte, não é completa, focalizando apenas os minerais e rochas industriais, nos quais o estado se destaca na produção. Não são citados igualmente os materiais destinados à construção civil (brita, areia, argilas para cerâmica vermelha) de distribuição extremamente variada e sujeitos à regras regionalizadas de mercado. Da mesma forma não serão mencionadas as gemas e o diamante, que são objeto de estudos a parte.

Polimorfos de Al₂SiO₅

O estado de Minas Gerais possui consideráveis reservas de polimorfos Al₂SiO₅, principalmente de cianita. A maior parte destes depósitos situa-se no norte do estado associado à Formação Salinas, no médio Rio Jequitinhonha e também em ocorrências isoladas ao longo da Serra do Espinhão. Outros depósitos são encontrados no sul, em toda a área de afloramento do Grupo Andrelândia, principalmente à nordeste da cidade homônima. Neste último caso são depósitos residuais, do tipo eluvial e coluvial, associados à granada e rutilo. A cianita, em ambas regiões de ocorrência, tem qualidade muito variável, por vezes contendo grande quantidade de óxidos de ferro e grafita, inviabilizando seu uso na indústria de refratários, alumínios ou sílico-alumínios. Tentativas locais de beneficiamento têm sido feitas nos últimos anos, porém com êxito duvidoso, principalmente pela má qualidade do material.

Caulim

Entende-se por caulim, qualquer argila que contenha no mínimo 75% do argilo mineral denominado caulinita, ou de minerais deste grupo, tais como dickita, halloysita, etc. Os depósitos que fornecem o material mais puro, são os relacionados à alteração intempérica dos feldspatos dos pegmatitos, sendo por isso considerados, impropriamente como depósitos primários. O estado de Minas Gerais possui uma vasta região produtora de caulim deste tipo, que se estende desde o sul do estado, região de Juiz de Fora e Mar de Espanha, até o nordeste, ao longo da Província Pegmatítica Oriental. O material necessita de beneficiamento para separação dos componentes indesejáveis, principalmente quartzo. Os depósitos ditos secundários, são os de caulim sedimentar, em aluvões ao longo dos rios. Neste caso o caulim é geralmente escuro e contém matéria orgânica, que não é contudo, indesejável ao processo industrial, contrariamente à presença de hidróxidos de ferro. Uma grande parte do caulim para indústria cerâmica tem sido, nos últimos anos, substituído por filitos caulínicos, com teor variável em caulinita, quartzo e sericita, e encontrados nos grupos Bambuí e Canastra e no Supergруpo Espinhão.

Agalmatolito

O agalmatolito é uma rocha industrial de utilização nobre em refratários sílico-alumínios e como carga mineral. O estado de Minas Gerais é o único que dispõe de reservas importantes deste material, que tem sido lavradas intirruptamente desde os anos 30, na faixa de rochas aneruanas do Supergroupo Rio das Velhas entre Mateus Leme e Pitangui. O agalmatolito desta região provêm de alteração hidrotermal de rochas vulcânicas ácidas e intermediárias e tem aplicações tanto como material refratário quanto como carga mineral para indústria de plásticos, tintas, borracha e outras. A utilização depende da mineralogia, que é variada tanto do depósito para depósito, quanto no mesmo depósito. Ela é constituída por proporções desiguais de muscovita (que aumenta o teor em álcalis), pirofilita (diminui o teor em álcalis), cianita-andaluza, diásporo e corindon (aumentam o
teor em alumínio). Como minerais indesejáveis encontram-se os hidróxidos de ferro, rutilo, turmalina e outros menores. Em geral, o material rico em alumínio e pobre em álcalis é do tipo refratário e o rico em álcalis (muscovita) é do tipo carga mineral. A faixa Mateus Leme-Pitanguí, apesar de intensamente lavrada, ainda dispõe de depósitos de porte considerável que estão em mãos de companhias mineradoras de grande, médio e pequeno portes. Uma outra região promissora para a prospecção de agalmatolitos é a de Passatempo, Desterro de Entre Rios, Oliveira, Carmo da Mata, com pequenos depósitos, sobretudo do tipo carga mineral.

Serpentinito e talco

Como produtos de alteração metassomática de rochas ultramáficas, esses materiais são abundantes no estado de Minas Gerais, associados ao Supergrupo Rio das Velhas no sul e parte central do Quadrilátero Ferrífero, na região de Serro-Conceição do Mato Dentro, na região de São João del Rei-Carandiru e em outras com depósitos menos importantes. O material é utilizado geralmente como carga mineral para indústria de tintas, borracha, farmacêutica, cosméticos, etc., e tem problemas com minerais contaminantes (anfibólios fibrosos). O serpentinito associado aos depósitos de talco tem sido, de mancera crescente, empregado como fundente e escorificante em siderurgia, substituindo o dolomito. Seu beneficiamento (britagem e classificação) é realizado na própria lavra.

Feldspato e outros minerais industriais de pegmatitos

Toda a produção de feldspato do estado de Minas Gerais é proveniente de pegmatitos da região de Governador Valadares, Gailhêla, Conselheiro Pena e destina-se às indústrias cerâmicas e vidreira. O material é sujeito à especificações químicas, conforme a destinação industrial. Outros minerais industriais de pegmatitos são lavrados no restante da Província Pegmatítica Oriental, principalmente os minerais de lítio da região de Araçuaí-Ittinga, que se destinam à fabricação de vidros especiais. Esaíns de beneficiamento tem sido realizados nos últimos anos, e visam sobretudo o aproveitamento racional e econômico de todo corpo pegmatítico.

Rochas ornamentais

Embora possa ser considerada inexpressiva, em termos de produção mundial, o estado de Minas Gerais ocupa, com relação aos demais estados brasileiros, posição de destaque no setor de rochas ornamentais, com a extração predominantemente de rochas graníticas. A considerar o seu grande potencial, é certo que o estado poderia ter ampliada a sua capacidade de extração e com muito mais justificativa, mostrar melhor desempenho no que diz respeito ao beneficiamento destes materiais. Atualmente o estado ainda exporta a maior parte da sua produção sem nenhum beneficiamento. Com a aplicação de técnicas corretas e reduzindo os desperídios (perdas na extração e no beneficiamento) poderia aumentar consideravelmente o volume de material produzido.

Ao contrário de outros estados brasileiros, como Espírito Santo, São Paulo e Bahia, Minas Gerais mostra grande diversidade de tipos de rochas e apresenta um conjunto de fatores que, aliados às suas reservas, o colocam em posição privilegiada.

Aos já tradicionais e internacionalmente conhecidos granitos mineiros, devem ser acrescentados os inúmeros tipos gnássicos, que na nomenclatura comercial são conhecidos por "tipos movimentados", não podendo ser esquecidas as inúmeras variedades de quartzitos e ardisias, todas estas com boas chances de competitividade no mercado externo ou facilmente comercializadas no mercado interno, em função da razoável malha rodovieriária existente no estado.

Em termos regionais, o nordeste do estado caracteriza-se pela ocorrência de uma grande variedade de granitos, de coloração variando dos tipos esbranquiçados aos acinzentados, isotrópicos, equigranulares ou ainda do tipo porfiríticos. Destacam-se os granitos porfiríticos das regiões de Comoceinho e André Fernandes, os charnockitos de Padre Saraí e ainda os cordierita-granada-granitos das regiões de Itinga, Itabim e Águas Formosas. Gnaisses migmatíticos ou não, mostrando os mais diversos padrões de "movimentação", têm nesta região grande distribuição areal.

A porção leste do estado, ainda muito pouco pesquisada, caracteriza-se pela presença dos tipos graníticos, como os das regiões de Carlos Chagas, Mangalô e Teófilo Otoai, alguns destes mostrando padrões porfiríticos de raz beleza e portadores ou não de granada. Em termos de coloração, estes granitos mostram variações desde os tipos esbranquiçados até aqueles rosados. Os tipos charnockíticos do vale do Macuri, de granulação mais fina e de composição tonalítica, mostram variações de cores, que gradam do negro absoluto ao tons esverdeados e a estes encontram-se associados granitos esbranquiçados, porfiríticos ou não. Com distribuição restrita à região situada a leste dos municípios de Águas Formosas ao norte e Carlos Chagas ao sul, encontram-se os cordierita-granada-gnaisses, mostrando diversos padrões de movimentação e de cor, destacando-se aqueles portadores de cordieritas de coloração azul. Ao sul de Governador Valadares até a região de Carangola, ainda na porção leste do estado, encontram-se predominantemente, os tipos gnássicos de composição para ou ortoderivada. Esparadecamente, são encontradas rochas gabróicas, que mostram texturas e estruturas ígneas bem preservadas. Ainda nesta região, ocorrem gnaisses com texturas miloníticas, mostrando grande variação de cores.

Rochas graníticas, mostrando padrões "movimentados" ou não, são encontradas a leste, entre Mutum e Lajinha, já próximas à divisa com o Espírito Santo.

Nas regiões sudeste e sul do estado, concentram-se os principais polos de extração de rochas ornamentais.
e estas caracterizam-se, essencialmente, pela produção e beneficiamento de gnaisses, mostrando diversificados padrões texturais e de cores. Destacam-se nestas regiões os centros produtores de Candeias, Campo Belo, Itapecerica, Lavras e Formiga, dentre outros.

Os mais expressivos centros de extração e beneficiamento de rochas quartzíticas, comumente utilizadas em revestimentos e pisos, localizam-se nas regiões de São Tomé das Letras, Luminárias e Cachoeira do Campo. Embora ocorram em grande volume nas regiões leste e Espinhaço mineiros, estes não foram ainda estudados para esta finalidade. Em alguns casos, estes poderiam ser aproveitados pela indústria da construção civil ou como fonte de matéria prima para a confecção de lignas ou ainda serem utilizados como fundente na indústria siderúrgica.

As regiões de Mar de Espanha, Cachoeira do Campo, Campos Altos, Cardeal Mota e Monjolos, dispersas no estado, caracterizam-se pela ocorrência de mármores e calcários, não competindo, no entanto, com outros grandes centros produtores, como os capixabas.

Argilas especiais

A pesar das argilas comuns, bem entendidas as argilas com baixo teor de caulinita e teores variáveis de quartzo, óxidos e hidróxidos de ferro e destinadas à fabricação de produtos cerâmicos, representaram um recurso mineral relativamente abundante, as argilas mais nobres, úteis aqui argilas especiais, não o são. Como argilas mais nobres citam-se principalmente aquelas do grupo das smectitas e das bentonitas comerciais. As principais regiões produtoras têm sido as de Poços de Caldas, com argilas derivadas da alteração intemperícia de rochas vulcânicas alcalinas, região do Triângulo Mineiro e Alto Paraíba, derivadas da alteração de tufos vulcânicos alcalinos e zeolitas dos basaltos. A produção em algumas regiões tem sido intermitente, frente às alterações de mercado. A produção desta argila supre o mercado fabricante de lamas de perfuração, aglomerantes, filtrantes e clarificantes.

Calcário e dolomito

São recursos minerais abundantes e fartamente distribuídos em toda a extensão do território mineiro. O Grupo Bambuí tem fornecido a maior parte da produção, destacando-se os polos industriais de Pains-Arco para produção de cal, calcário agrícola e químico (carbonato de cálcio precipitado), o de Pedro Leopoldo-Matozinhos-Sete Lagos para a indústria cimenteira e de calcinação e o de Montes Claros também para a indústria cimenteira, além de dolomito na faixa Unai-Paracatu-Vazante. Destacam-se ainda os polos cimenteiros de Carandai-Barroso (Grupo São João Del Rei), Ituá de Minas (Grupo Araxá), além de ocorrências isoladas em Poté, Mar de Espanha (mármore), Triângulo Mineiro (Grupo Bauru), dolomitos da Formação Gandarela e Fecho do Funil no Quadrilátero Ferrífero e outras menores. Como trata-se de um recurso mineral extremamente abundante, sua produção é setorizada e atende somente aos apelos locais de mercado.

Grafita

O estado se destaca na produção de grafita com dois polos consolidados que são os de Itapecerica e o de Pedra Azul. Em ambos os casos trata-se de grafita associada aos gnaisses e xistos de grau metamórfico alto, sendo produzido material fino e do tipo flake de uso industrial mais nobre e destinado à fabricação de lubrificantes especiais, refratários e carga mineral. Várias ocorrências de xistos e filóis grafitosos são encontradas nas sequências arqueanas e paleo-proterozoicas do estado. Muitas delas são lavradas, o material é concentrado e vendido para as indústrias siderúrgicas.

CONCLUSÕES E RECOMENDAÇÕES

Tradicionalmente, em função das grandes reservas de minério de ferro e ouro disponíveis no estado, a pesquisa voltada para os minerais e rochas industriais não metálicos, não tem merecido igual atenção por parte das instituições de ensino e pesquisa geológicas. O ensino restringe-se às disciplinas optativas de cursos, especialmente na área da engenharia. Prova inequívoca dessa realidade constitui a ausência no mercado de trabalho de profissionais especializados e de infraestrutura laboratorial voltada para a caracterização destes bens minerais.

Este quadro resulta da inexistência de política voltada para o setor e da falta de entrosamento entre os órgãos públicos, dentre os quais a universidades e o setor privado, entrosamento este, que em outros casos tem demonstrado ser a fórmula ideal para a resolução de problemas nos mais diversos setores envolvendo a produção de outros bens minerais.

Dentro dos inúmeros programas de pesquisa e mapeamento, com participação direta ou indireta de pesquisadores das nossas instituições e levados a efeito no estado, consta-se que estes bens tiveram sempre uma abordagem pouco expressiva. Afora iniciativas desta natureza, poucos têm sido os profissionais a demonstrar interesse pelo assunto e, por diversos motivos não têm conseguido sensibilizar a comunidade e os órgãos do estado.

Cabe ressaltar que estes dados representam uma pequena parcela do conhecimento adquirido através do desenvolvimento de inúmeros projetos que contaram com financiamento por parte de agências financeiradoras públicas.

Sendo assim, entendemos que aos setores do estado, que tradicionalmente desenvolvem pesquisa na área das geociências e, principalmente, às instituições de ensino e pesquisa das Universidades mineiras, caberia o papel de fomentar conjuntamente a pesquisa no setor. Naqueles Centros, cujas infraestruturas laboratoriais foram montadas com suporte financeiro do estado, deveriam-se processar redirecionamentos e
redimensionamentos de parte dos seus potenciais de pesquisa, visando o desenvolvimento de novas técnicas de extração e de beneficiamento, mas adaptadas às nossas realidades.

Em especial, aos cursos de Geologia caberiam a tarefa de promover desde a graduação o envolvimento dos futuros geólogos com a problemática do setor, lembrando que este profissional tem papel importante a desempenhar não só na fase de pesquisa, mas também na de extração e beneficiamento. Esta participação implicaria na criação de disciplinas específicas em seus cursos de graduação e na implantação dos de Pós-Graduação (sensu lato), visando a formação de geólogos e de outros profissionais capacitados para uma correta atuação no setor, seja de rochas ornamentais, seja no de minerais industriais não metálicos.

As professoras Vitória R. Marciano e Maria Lurdes Fernandes integram o grupo de professores envolvidos com o estudo dos Minerais e Rochas Industriais do Departamento de Geologia e cooperaram na montagem do painel.
CRÉDITOS

Diagramação eletrônica - CIRRUS Informática e Geologia Ltda
Geração dos "laserfilms" - CPMT/IGC/UFMG (Centro de Pesquisa Prof. Manoel Teixeira da Costa)
Logomarca - Fernando Azevedo
Retrato em bico de pena - João Henrique Grossi Sad Junior
Gráfica - Editora Gráfica Ribeiro Grego Ltda